留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于C-TOF成像的位姿测量与地物目标识别技术研究

卢纯青 杨孟飞 武延鹏 梁潇

卢纯青, 杨孟飞, 武延鹏, 梁潇. 基于C-TOF成像的位姿测量与地物目标识别技术研究[J]. 红外与激光工程, 2020, 49(1): 0113005-0113005(9). doi: 10.3788/IRLA202049.0113005
引用本文: 卢纯青, 杨孟飞, 武延鹏, 梁潇. 基于C-TOF成像的位姿测量与地物目标识别技术研究[J]. 红外与激光工程, 2020, 49(1): 0113005-0113005(9). doi: 10.3788/IRLA202049.0113005
Lu Chunqing, Yang Mengfei, Wu Yanpeng, Liang Xiao. Research on pose measurement and ground object recognition technology based on C-TOF imaging[J]. Infrared and Laser Engineering, 2020, 49(1): 0113005-0113005(9). doi: 10.3788/IRLA202049.0113005
Citation: Lu Chunqing, Yang Mengfei, Wu Yanpeng, Liang Xiao. Research on pose measurement and ground object recognition technology based on C-TOF imaging[J]. Infrared and Laser Engineering, 2020, 49(1): 0113005-0113005(9). doi: 10.3788/IRLA202049.0113005

基于C-TOF成像的位姿测量与地物目标识别技术研究

doi: 10.3788/IRLA202049.0113005
基金项目: 

十三五预研基金

详细信息
    作者简介:

    卢纯青(1988-),男,工程师,博士,主要从事空间成像感知与智能导航控制技术方面的研究。Email:cust0702@sina.com

  • 中图分类号: TP391.41

Research on pose measurement and ground object recognition technology based on C-TOF imaging

  • 摘要: 深空探测器的功耗和体积有限,任务工况多样,与低轨道地球探测器相比,深空探测器对导航敏感器的任务能力提出了更高的需求。提出了一种基于飞行时间成像的快速位姿测量和地物目标识别技术。为了在保证位姿测量精度的前提下满足对位姿测量时间性能的需求,提出了一种基于深度信息的动态尺度估计方法。该方法提升了物方多尺度变化条件下点云配准的时间稳定性,平均配准时间缩短60%以上,平均配准精度约为0.04 m。为了满足多尺度、多形态地物目标识别的需求,使用了基于轻量化深度神经网络,可根据场景深度信息进行地物检测。结果表明,该方法可对地物特征进行快速感知,在真实场景中的准确率达到70%以上。
  • [1] Yano H, Kubota T, Miyamoto H, et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa[J]. Science, 2006, 312(5778):1350-1353.
    [2] Tsuchiyama A, Uesugi M, Matsushima T, et al. Three-dimensional structure of Hayabusa samples:origin and evolution of Itokawa regolith[J]. Science, 2011, 333(6046):1125-1128.
    [3] Tsuda Y, Yoshikawa M, Abe M, et al. System design of the Hayabusa 2-Asteroid sample return mission to 1999 JU3[J]. Acta Astronautica, 2013, 91:356-362.
    [4] Tsuda Y, Yoshikawa M, Saiki T, et al. Hayabusa2-Sample return and kinetic impact mission to near-earth asteroid Ryugu[J]. Acta Astronautica, 2019, 156:387-393.
    [5] Titterton D H. Military Laser Technology and Systems[M]. US:Artech House, 2015.
    [6] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009:3212-3217.
    [7] Zhang Z. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 1994, 13(2):119-152.
    [8] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on. IEEE, 2001:145-152.
    [9] Biber P, Strasser W. The normal distributions transform:A new approach to laser scan matching[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003)(Cat. No. 03CH37453). IEEE, 2003, 3:2743-2748.
    [10] Yue X, Wu B, Seshia S A, et al. A lidar point cloud generator:from a virtual world to autonomous driving[C]//Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval. ACM, 2018:458-464.
    [11] Wu B, Wan A, Yue X, et al. Squeezeseg:Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018:1887-1893.
    [12] Wu B, Zhou X, Zhao S, et al. Squeezesegv2:Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019:4376-4382.
    [13] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
  • [1] 邵家起, 陈洪雷, 丁瑞军.  线性APD混合飞行时间测距模型及读出电路设计 . 红外与激光工程, 2023, 52(9): 20220892-1-20220892-10. doi: 10.3788/IRLA20220892
    [2] 林森, 赵振禹, 任晓奎, 陶志勇.  基于语义信息补偿全局特征的物体点云分类分割 . 红外与激光工程, 2022, 51(8): 20210702-1-20210702-12. doi: 10.3788/IRLA20210702
    [3] 杜中强, 唐林波, 韩煜祺.  面向嵌入式平台的车道线检测方法 . 红外与激光工程, 2022, 51(7): 20210753-1-20210753-8. doi: 10.3788/IRLA20210753
    [4] 孙旭旦, 吴清, 赵春艳, 张满囤.  语义增强引导特征重建的遮挡行人检测 . 红外与激光工程, 2022, 51(9): 20210924-1-20210924-10. doi: 10.3788/IRLA20210924
    [5] 朱祯悦, 吕淑静, 吕岳.  基于图匹配网络的小样本违禁物品分割算法 . 红外与激光工程, 2021, 50(11): 20210075-1-20210075-9. doi: 10.3788/IRLA20210075
    [6] 苏云征, 郝群, 曹杰, 闫雷, 武帅.  合并分割块的点云语义分割方法 . 红外与激光工程, 2021, 50(10): 20200482-1-20200482-10. doi: 10.3788/IRLA20200482
    [7] 朱琳琳, 韩璐, 杜泓, 范慧杰.  基于U-Net网络的多主动轮廓细胞分割方法研究 . 红外与激光工程, 2020, 49(S1): 20200121-20200121. doi: 10.3788/IRLA20200121
    [8] 王立, 吴奋陟, 梁潇.  我国深空探测光学敏感器技术发展与应用(特约) . 红外与激光工程, 2020, 49(5): 20201004-20201004-6. doi: 10.3788/IRLA20201004
    [9] 邓力, 陈钱, 贺元骅, 隋修宝.  基于自适应MIMO技术的深空探测对流层延迟预测 . 红外与激光工程, 2020, 49(5): 20190471-20190471-5. doi: 10.3788/IRLA20190471
    [10] 邱家稳, 王强, 马继楠.  深空探测技术(特约) . 红外与激光工程, 2020, 49(5): 20201001-20201001-10. doi: 10.3788/IRLA20201001
    [11] 范斌, 刘彦丽, 赵海博, 徐婧, 孙权森, 王旭.  新型深空高光谱衍射计算成像探测技术(特约) . 红外与激光工程, 2020, 49(5): 20201005-20201005-6. doi:  10.3788.IRLA20201005
    [12] 卢纯青, 宋玉志, 武延鹏, 杨孟飞.  基于相关法飞行时间三维感知的误差机理研究 . 红外与激光工程, 2019, 48(11): 1113002-1113002(9). doi: 10.3788/IRLA201948.1113002
    [13] 刘奉昌, 李威, 董吉洪, 赵伟国, 赵海波, 李晓波.  深空探测相机超轻主支撑结构优化设计 . 红外与激光工程, 2019, 48(12): 1214003-1214003(8). doi: 10.3788/IRLA201948.1214003
    [14] 黄民双, 刘晓晨, 马鹏.  脉冲飞行时间激光测距系统中周期误差补偿 . 红外与激光工程, 2018, 47(3): 317004-0317004(5). doi: 10.3788/IRLA201847.0317004
    [15] 罗海波, 何淼, 惠斌, 常铮.  基于双模全卷积网络的行人检测算法(特邀) . 红外与激光工程, 2018, 47(2): 203001-0203001(8). doi: 10.3788/IRLA201847.0203001
    [16] 马聪, 李威, 张远清, 李晓波, 安明鑫.  深空探测遥感相机支撑结构设计 . 红外与激光工程, 2018, 47(6): 618004-0618004(6). doi: 10.3788/IRLA201847.0618004
    [17] 林栩凌, 邬志强, 杨颂, 张智, 毕思文, 张璇, 杜雨洁.  一种应用于深空探测的弱信号探测技术 . 红外与激光工程, 2017, 46(9): 913002-0913002(4). doi: 10.3788/IRLA201746.0913002
    [18] 韩郁翀, 秦俊, 马兴鸣, 赵兰明, 李雨农.  基于飞行时间深度图像变化率的火焰识别方法 . 红外与激光工程, 2014, 43(1): 338-344.
    [19] 岱钦, 耿岳, 李业秋, 张乐, 郝永平.  利用TDC-GP21的高精度激光脉冲飞行时间测量技术 . 红外与激光工程, 2013, 42(7): 1706-1709.
    [20] 张冰娜, 黄庚华, 舒嵘, 王建宇.  用于大动态范围厘米精度激光测距的孔径光阑自动调整技术 . 红外与激光工程, 2013, 42(7): 1788-1792.
  • 加载中
计量
  • 文章访问数:  770
  • HTML全文浏览量:  117
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 修回日期:  2019-06-15
  • 刊出日期:  2020-01-28

基于C-TOF成像的位姿测量与地物目标识别技术研究

doi: 10.3788/IRLA202049.0113005
    作者简介:

    卢纯青(1988-),男,工程师,博士,主要从事空间成像感知与智能导航控制技术方面的研究。Email:cust0702@sina.com

基金项目:

十三五预研基金

  • 中图分类号: TP391.41

摘要: 深空探测器的功耗和体积有限,任务工况多样,与低轨道地球探测器相比,深空探测器对导航敏感器的任务能力提出了更高的需求。提出了一种基于飞行时间成像的快速位姿测量和地物目标识别技术。为了在保证位姿测量精度的前提下满足对位姿测量时间性能的需求,提出了一种基于深度信息的动态尺度估计方法。该方法提升了物方多尺度变化条件下点云配准的时间稳定性,平均配准时间缩短60%以上,平均配准精度约为0.04 m。为了满足多尺度、多形态地物目标识别的需求,使用了基于轻量化深度神经网络,可根据场景深度信息进行地物检测。结果表明,该方法可对地物特征进行快速感知,在真实场景中的准确率达到70%以上。

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回