留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集成量子压缩光源的量子增强多普勒激光雷达(特邀)

高丽 张晓莉 马菁汀 姚文秀 王庆伟 孙悦 刘尊龙 王雅君 田龙 郑耀辉

高丽, 张晓莉, 马菁汀, 姚文秀, 王庆伟, 孙悦, 刘尊龙, 王雅君, 田龙, 郑耀辉. 基于集成量子压缩光源的量子增强多普勒激光雷达(特邀)[J]. 红外与激光工程, 2021, 50(3): 20210031. doi: 10.3788/IRLA20210031
引用本文: 高丽, 张晓莉, 马菁汀, 姚文秀, 王庆伟, 孙悦, 刘尊龙, 王雅君, 田龙, 郑耀辉. 基于集成量子压缩光源的量子增强多普勒激光雷达(特邀)[J]. 红外与激光工程, 2021, 50(3): 20210031. doi: 10.3788/IRLA20210031
Gao Li, Zhang Xiaoli, Ma Jingting, Yao Wenxiu, Wang Qingwei, Sun Yue, Liu Zunlong, Wang Yajun, Tian Long, Zheng Yaohui. Quantum enhanced Doppler LiDAR based on integrated quantum squeezed light source(Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210031. doi: 10.3788/IRLA20210031
Citation: Gao Li, Zhang Xiaoli, Ma Jingting, Yao Wenxiu, Wang Qingwei, Sun Yue, Liu Zunlong, Wang Yajun, Tian Long, Zheng Yaohui. Quantum enhanced Doppler LiDAR based on integrated quantum squeezed light source(Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210031. doi: 10.3788/IRLA20210031

基于集成量子压缩光源的量子增强多普勒激光雷达(特邀)

doi: 10.3788/IRLA20210031
基金项目: 国家自然科学基金(62027821,11654002,11874250,11804207,11804206,62035015);山西省重点研发计划(201903D11001);山西省三晋学者特聘教授项目;山西省“1331”重点建设学科;山西省高等学校中青年拔尖创新人才
详细信息
    作者简介:

    高丽 (1999−),女,本科生,主要从事非经典光场产生与应用方面的研究工作。曾获2019年山西大学第五届“互联网+”大学生创新创业大赛三等奖、2019年山西大学三等学业奖学金、2020年山西大学国家励志奖学金、2020年山西大学一等学业奖学金

    田龙 (1988−),男,副教授,硕士生导师,博士。主要致力于连续变量非经典光场产生与应用以及量子精密测量等方面研究。承担国家自然科学青年基金一项,山西省应用基础研究计划课题项目一项。先后在Phys. Rev. Lett., Opt. Express等国内外重要学术刊物上发表论文10余篇

    郑耀辉 (1979−),男,教授,博士生导师,博士。主要致力于激光技术、光量子器件等方面的实验与理论研究及高技术成果转化。先后承担国家863计划1项,国家重大科研仪器研制项目1项,国家重点研发项目课题负责人,国家自然科学基金2项,作为骨干参与国家973计划、国家自然科学基金仪器专项、面上项目多项。先后在Phys. Rev. Lett., Opt. Lett., Appl. Phys. Lett. 等国内外重要学术刊物上发表论文60余篇;申请国家发明专利30余项

    通讯作者: 田龙
  • 中图分类号: N93;TN241

Quantum enhanced Doppler LiDAR based on integrated quantum squeezed light source(Invited)

  • 摘要: 传统激光雷达探测灵敏度不断提高,但仍然受激光光源的量子噪声以及探测端引入的额外噪声等因素限制。为了进一步提高激光雷达的探测性能,提出利用量子压缩态光场作为激光雷达的本振信号提高激光雷达探测精度的新方案,分析了所提出方案提高激光雷达探测精度的关键因素。制备了集成化低噪声压缩态光场并进行了激光雷达多普勒信息测量实验。实验结果表明,相较于传统相干多普勒激光雷达探测方案,所提方案实现了多普勒信息探测灵敏度3 dB的提升,为量子激光雷达中多普勒信息等微弱信号的探测提供研究途径。
  • 图  1  压缩态光场在相空间中示意图以及时域信号

    Figure  1.  Distribution of the squeezed state in phase space and the photon number distribution of the squeezed state

    图  2  量子增强自零拍探测原理图(PBS:偏振分束棱镜;PD:光电探测器;SA:频谱分析仪)

    Figure  2.  Theoretical diagram of the quantum enhanced self-homodyne detection (PBS: polarization beam splitter; PD: photodetector; SA: spectrum analyzer)

    图  3  基于压缩态光场的量子增强激光雷达探测方案装置图。HR:高反镜,AOM:声光调制器,BS:分束器,DBS:双色分束器,OPA:光学参量放大器,PBS1-2:偏振分束棱镜,PD:光电探测器,SA:频谱分析仪

    Figure  3.  Experimental setup of quantum enhanced LiDAR detection based on the squeezed state light field. HR: high reflectivity mirror; AOM: audio-optical modulator; BS: beam splitter; DBS: dichromatic beam splitter; OPA: optical parameter amplifier; PBS1-2: polarization beam splitter; PD: photodetector; SA: spectrum analyzer

    图  4  集成压缩态光场压缩度测量结果((a) 量子噪声极限;(b) 压缩态光场噪声谱;(c) 压缩态光场噪声谱最低压缩度)

    Figure  4.  Measurement results of squeezing level of the integrated squeezed light field ((a) Quantum noise limit; (b) Noise spectrum of squeezed state light field; (c) Minimum squeezed degree of noise spectrum of squeezed state light field)

    图  5  利用自零拍探测系统进行量子增强多普勒信息探测结果((a) 压缩光注入的回波信号噪声谱;(b) 散粒噪声基准噪声谱;(c) 相干光注入的回波信号噪声谱)

    Figure  5.  Measured results of quantum enhanced Dopplor information detection by self-homodyne detection system ((a) Noise spectrum of squeezed light injection echo signal; (b) Noise spectrum of shot noise datum; (c) Noise spectrum of coherent light injection echo signal)

  • [1] Weitkamp C. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere[M]. Geesthacht: Springer, 2005.
    [2] Cracknell A P, Hayes L. Introduction to Remote Sensing[M]. 2nd ed. London: Taylor and Francis, 2007.
    [3] Deng C J, Pan L, Wang C L, et al. Performance analysis of ghost imaging lidar in background light environment [J]. Photon Res, 2017, 5(5): 431-435. doi:  10.1364/PRJ.5.000431
    [4] Zheng Y C, Wang Y Z, Yue C Y. Technical and application development study of space-borne atmospheric environment observation lidar [J]. Infrared and Laser Engineering, 2018, 47(3): 0302002. (in Chinese)
    [5] Wang G N, Liu B Y, Feng C Z, et al. Data quality control method for VAD wind field retrieval based on coherent wind lidar [J]. Infrared and Laser Engineering, 2018, 47(2): 0230002. (in Chinese)
    [6] Shen Z M, Zhao T, Wang Y C, et al. Underwater target detection of chaotic pulse laser radar [J]. Infrared and Laser Engineering, 2019, 48(4): 0406004. (in Chinese)
    [7] Wang G L, Liu L P, Qiu C J, et al. A study of wind field retrieval from Doppler lidar observations [J]. Chinese Journal of Atmospheric Sciences, 2010, 34(1): 143-153. (in Chinese)
    [8] Wei T W, Xia H Y, Hu J J, et al. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar [J]. Opt Express, 2019, 27(22): 31235-31245.
    [9] Jin L. Research progress of quantum radar [J]. Modern Radar, 2017, 39(3): 1-7. (in Chinese)
    [10] Sun J, Huang H X. Target properties in quantum radar detection [J]. Journal of Microwaves, 2019, 35(6): 1-9.
    [11] Wang Q, Zhang Y, Hao L L, et al. Super-resolving quantum LADAR with odd coherent superposition states sources at shot noise limit [J]. Infrared and Laser Engineering, 2015, 44(9): 2569-2574. (in Chinese)
    [12] Zhang J D, Zhang Z J, Zhao Y, et al. Super-sensitivity interferometric quantum lidar with squeezed-vacuum injection [J]. Infrared and Laser Engineering, 2017, 46(7): 0730002. (in Chinese)
    [13] Lloyd S. Enhanced sensitivity of photodetection via quantum illumination [J]. Science, 2008, 321(5895): 1463-1465. doi:  10.1126/science.1160627
    [14] Malik M, Magaña-Loaiza O S, Boyd R W. Quantum-secured imaging [J]. Appl Phys Lett, 2012, 101(24): 241103. doi:  10.1063/1.4770298
    [15] Lopaeva E D, Berchera I R, Degiovanni I P, et al. Experimental realization of quantum illumination [J]. Phys Rev Lett, 2013, 110(15): 153603. doi:  10.1103/PhysRevLett.110.153603
    [16] Burdge G, Deibner G, Shaprio J, et al. Quantum Sensors Program[M]. New York: Defense Advanced Research Projects Agency, 2009.
    [17] Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification [J]. J Opt Soc Am B, 2010, 27(6): A63-A72. doi:  10.1364/JOSAB.27.000A63
    [18] Wang Q, Hao L L, Zhang Y, et al. Optimal detection strategy for super-resolving quantum lidar [J]. J Appl Phys, 2016, 119(2): 023109. doi:  10.1063/1.4939777
    [19] Wang Q, Hao L L, Zhang Y, et al. Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffice to beat the shot-noise limit [J]. Optics Express, 2016, 24(5): 5045-5056. doi:  10.1364/OE.24.005045
    [20] Wang Q, Hao L L, Tang H X, et al. Super-resolving quantum LiDAR with even coherent states sources in the presence of loss and noise [J]. Physics Letters A, 2016, 380(44): 3717-3723. doi:  10.1016/j.physleta.2016.08.033
    [21] Sun X C, Wang Y J, Tian L, et al. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection [J]. Chin Opt Lett, 2019, 17(7): 072701. doi:  10.3788/COL201917.072701
  • [1] 罗雄, 史悦, 范琪, 尹微, 彭涛, 赵培娥, 王柯, 周鼎富.  基于相干激光雷达气象多要素探测 . 红外与激光工程, 2023, 52(11): 20230138-1-20230138-10. doi: 10.3788/IRLA20230138
    [2] 刘敬, 金伟其, 阙开良.  一种基于重叠因子的同轴警戒激光雷达动态范围压缩方法 . 红外与激光工程, 2023, 52(10): 20230027-1-20230027-10. doi: 10.3788/IRLA20230027
    [3] 惠俊, 柴洪洲, 向民志, 杜祯强, 靳凯迪.  量子增强星载光子计数激光雷达阈值检测性能 . 红外与激光工程, 2023, 52(4): 20220469-1-20220469-11. doi: 10.3788/IRLA20220469
    [4] 徐国权, 李广英, 万建伟, 许可, 董光焰, 程光华, 王兴, 韩文杰, 马燕新.  脉冲调制激光雷达水下成像系统 . 红外与激光工程, 2022, 51(3): 20210204-1-20210204-8. doi: 10.3788/IRLA20210204
    [5] 张子静, 谢佳衡, 黄明维, 赵远.  量子激光雷达研究综述(特邀) . 红外与激光工程, 2022, 51(1): 20211102-1-20211102-13. doi: 10.3788/IRLA20211102
    [6] 李光福, 南钢洋, 潘冬阳, 白雪, 刘帅, 孙志慧.  激光雷达测风系统信号采集处理研究 . 红外与激光工程, 2021, 50(S2): 20210467-1-20210467-7. doi: 10.3788/IRLA20210467
    [7] 杨程, 鄢秋荣, 祝志太, 王逸凡, 王明, 戴伟辉.  基于深度学习的压缩光子计数激光雷达 . 红外与激光工程, 2020, 49(S2): 20200380-20200380. doi: 10.3788/IRLA20200380
    [8] 沈振民, 赵彤, 王云才, 郑永超, 尚卫东, 王冰洁, 李静霞.  混沌脉冲激光雷达水下目标探测 . 红外与激光工程, 2019, 48(4): 406004-0406004(7). doi: 10.3788/IRLA201948.0406004
    [9] 高健, 周安然, 孙东松, 郑俊, 李梓霂, 韩於利.  多普勒激光雷达中种子激光注入的一种鉴别方法 . 红外与激光工程, 2018, 47(2): 230001-0230001(7). doi: 10.3788/IRLA201847.0230001
    [10] 王强, 郝利丽, 唐红霞, 李贤丽, 牟海维, 韩连福, 赵远.  实际环境对量子激光雷达性能的影响 . 红外与激光工程, 2018, 47(S1): 29-35. doi: 10.3788/IRLA201847.S106006
    [11] 夏文泽, 韩绍坤, 曹京亚, 王亮, 翟倩.  激光雷达距离估计技术 . 红外与激光工程, 2016, 45(9): 906005-0906005(6). doi: 10.3788/IRLA201645.0906005
    [12] 吴超, 刘春波, 韩香娥.  光波导相控阵激光雷达接收系统设计 . 红外与激光工程, 2016, 45(10): 1030003-1030003(6). doi: 10.3788/IRLA201645.1030003
    [13] 单坤玲, 刘新波, 卜令兵, 郜海阳, 黄兴友.  激光雷达和毫米波雷达的卷云微物理特性的联合反演方法 . 红外与激光工程, 2015, 44(9): 2742-2746.
    [14] 史风栋, 刘文皓, 汪鑫, 丁娟, 史屹君, 修春波.  室内激光雷达导航系统设计 . 红外与激光工程, 2015, 44(12): 3570-3575.
    [15] 曹开法, 黄见, 胡顺星.  边界层臭氧差分吸收激光雷达 . 红外与激光工程, 2015, 44(10): 2912-2917.
    [16] 王强, 张勇, 郝利丽, 靳辰飞, 杨旭, 徐璐, 杨成华, 赵远.  基于奇相干叠加态的超分辨率量子激光雷达 . 红外与激光工程, 2015, 44(9): 2569-2574.
    [17] 靳辰飞, 胡鹏, 张思琦, 刘丽萍, 赵远, 谭立英.  增益调制激光雷达弱信号的双阈值处理分析 . 红外与激光工程, 2014, 43(8): 2447-2452.
    [18] 赵培娥, 罗雄, 曹文勇, 赵彬, 冯立天, 李晓锋, 谭锦, 周鼎富.  应用Zoom FFT方法提高相干测风激光雷达频谱分辨率 . 红外与激光工程, 2014, 43(1): 98-102.
    [19] 姜成昊, 杨进华, 张丽娟, 李祥.  新型多普勒成像激光雷达原理设计与仿真 . 红外与激光工程, 2014, 43(2): 411-416.
    [20] 孙崇利, 苏伟, 武红敢, 刘睿, 刘婷, 黄健熙, 朱德海, 张晓东, 刘峻明.  改进的多级移动曲面拟合激光雷达数据滤波方法 . 红外与激光工程, 2013, 42(2): 349-354.
  • 加载中
图(5)
计量
  • 文章访问数:  1176
  • HTML全文浏览量:  548
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 修回日期:  2021-02-16
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-03-15

基于集成量子压缩光源的量子增强多普勒激光雷达(特邀)

doi: 10.3788/IRLA20210031
    作者简介:

    高丽 (1999−),女,本科生,主要从事非经典光场产生与应用方面的研究工作。曾获2019年山西大学第五届“互联网+”大学生创新创业大赛三等奖、2019年山西大学三等学业奖学金、2020年山西大学国家励志奖学金、2020年山西大学一等学业奖学金

    田龙 (1988−),男,副教授,硕士生导师,博士。主要致力于连续变量非经典光场产生与应用以及量子精密测量等方面研究。承担国家自然科学青年基金一项,山西省应用基础研究计划课题项目一项。先后在Phys. Rev. Lett., Opt. Express等国内外重要学术刊物上发表论文10余篇

    郑耀辉 (1979−),男,教授,博士生导师,博士。主要致力于激光技术、光量子器件等方面的实验与理论研究及高技术成果转化。先后承担国家863计划1项,国家重大科研仪器研制项目1项,国家重点研发项目课题负责人,国家自然科学基金2项,作为骨干参与国家973计划、国家自然科学基金仪器专项、面上项目多项。先后在Phys. Rev. Lett., Opt. Lett., Appl. Phys. Lett. 等国内外重要学术刊物上发表论文60余篇;申请国家发明专利30余项

    通讯作者: 田龙
基金项目:  国家自然科学基金(62027821,11654002,11874250,11804207,11804206,62035015);山西省重点研发计划(201903D11001);山西省三晋学者特聘教授项目;山西省“1331”重点建设学科;山西省高等学校中青年拔尖创新人才
  • 中图分类号: N93;TN241

摘要: 传统激光雷达探测灵敏度不断提高,但仍然受激光光源的量子噪声以及探测端引入的额外噪声等因素限制。为了进一步提高激光雷达的探测性能,提出利用量子压缩态光场作为激光雷达的本振信号提高激光雷达探测精度的新方案,分析了所提出方案提高激光雷达探测精度的关键因素。制备了集成化低噪声压缩态光场并进行了激光雷达多普勒信息测量实验。实验结果表明,相较于传统相干多普勒激光雷达探测方案,所提方案实现了多普勒信息探测灵敏度3 dB的提升,为量子激光雷达中多普勒信息等微弱信号的探测提供研究途径。

English Abstract

    • 传统激光雷达通过发出连续或者脉冲相干激光照射目标,测量回波信号中振幅、频谱、相位、偏振、强度等信息,来获取目标位置、速度、姿态、散射特性等能够表征目标特性的信息,其在遥感成像[1-3]、环境监测[4]、相干测风[5]、水下目标探测[6]等方面都有重要的应用价值。多普勒激光雷达作为激光雷达中的一类,具有高精度测量、高空分辨率等特点[7],其中相干多普勒激光雷达使用本振光与回波信号拍频,可获得精确的多普勒频谱信息[8]。但传统激光雷达的探测精度受到量子噪声极限等因素的限制,难以满足实际应用中探测精度日趋提高的需求。针对上述因素的限制,量子雷达技术的发展为提高传统激光雷达探测精度提供有效途径。

      量子雷达[9]是指在传统雷达系统发射端、接收端或者探测系统中引入量子技术,利用量子资源以及量子信息处理等技术来提升雷达的性能和扩展传统雷达的功能[10],其具有潜在的高分辨率、高灵敏度、高稳定性等优点[11-12]。在基于离散变量量子资源的量子照明雷达方面,2008年,Lloyd等人从理论上提出基于纠缠的光子对实现环境噪声以及耗散免疫的量子照明方案[13]。2012年,罗切斯特大学Mehul Malik等人利用偏振纠缠光子对实现了量子安全成像[14];2013年,Lopaeva等人首次在实验上通过离散变量量子纠缠光子对验证了在较大环境损耗、热噪声背景以及弱反射情况的目标探测中有明显优势,验证了量子照明雷达方案[15]。与离散变量相比,连续变量具有确定性、高效率的优点,在基于连续变量量子资源的量子增强雷达方面,2007年,美国国防部高等研究计划局(Defense Advanced Research Projects Agency, DARPA)开展了接收端量子增强激光雷达的研究[16];2009年,DARPA又启动“量子传感项目”,研究基于连续变量量子压缩态光场以及相敏放大技术来突破传统探测系统物理极限增强其探测性能的方法,进而提高成像分辨率[16];2010年,美国麻省理工学院提出利用量子压缩真空态注入等方法来提高量子激光雷达性能方案[17]等。除此之外,国内哈尔滨工业大学王强等人利用奇偶检测等方案研究了量子激光雷达的分辨率[18-19],并提出一种新的以相干态作为发射源的激光雷达方案[20],在高灵敏度量子激光雷达性能的探测以及增强方面都有重要的进展。然而,由于实际应用的困难,量子雷达的发展仍然处于初步阶段,量子资源与传统资源匹配耦合、量子技术产业化等问题仍然有待解决。

      目前,基于量子资源、量子技术的精密测量物理以及量子信息科学等领域正在向实用化和产业化等方向发展,量子压缩光源作为重要的量子资源之一,同样需要向集成化和小型化等方向发展。文中首先在分析制备量子压缩态光场关键因素的基础上,研发了集成量子压缩光源,结合全封闭式外壳,可适用于外场实验;之后通过搭建激光雷达系统,将低噪声压缩光作为激光雷达中的本振光,与激光雷达回波信号进行高效耦合;最后与传统相干激光作为本振光进行对比分析,验证了利用量子压缩态光场代替相干态光场作为本振光的量子增强激光雷达方案在多普勒信息探测方面性能的提升。

    • 传统相干激光雷达的接收端与发射端均采用相干激光,在相空间中,通常使用正交振幅分量X以及正交位相分量Y描述光场的噪声特性,其噪声方差满足:

      $$\left\langle {{\delta ^2}X} \right\rangle =\left\langle {{\delta ^2}Y} \right\rangle =1$$ (1)

      而连续变量量子压缩态光场是某一正交分量可以突破量子噪声极限的一种非经典光场,即$\left\langle {{\delta ^2}X} \right\rangle < 1$或者$\left\langle {{\delta ^2}Y} \right\rangle {\rm{ < \; }}1$,通过解调特定分析频率的噪声方差信号可以获得压缩态光场在特定分析频率下的时域信号,如图1所示。

      图  1  压缩态光场在相空间中示意图以及时域信号

      Figure 1.  Distribution of the squeezed state in phase space and the photon number distribution of the squeezed state

      通过分析压缩态光场的特性,采用可突破量子噪声极限的压缩光代替相干激光,可在复杂的电磁环境下为提高激光雷达的探测精度提供有效的技术途径。但压缩态光场极易受光学损耗影响,所以采用将压缩光注入接收端的量子增强手段和将量子压缩态光场和微弱回波信号进行高效耦合才能实现量子资源有效利用。

      采用自零拍探测方案进行量子压缩光高效耦合,耦合方案如图2所示,将正交振幅压缩态光场代替传统相干态光场作为本振光,利用正交振幅压缩态光场具有更低的强度噪声来降低探测系统的噪声基底,从而提高测量灵敏度。其中偏振互相垂直的雷达回波信号和压缩态光场在偏振分束棱镜PBS1上耦合,再通过半波片和偏振分束棱镜PBS2进行干涉耦合,其输出光场可以表示为:

      图  2  量子增强自零拍探测原理图(PBS:偏振分束棱镜;PD:光电探测器;SA:频谱分析仪)

      Figure 2.  Theoretical diagram of the quantum enhanced self-homodyne detection (PBS: polarization beam splitter; PD: photodetector; SA: spectrum analyzer)

      $${\hat d_1} = \frac{1}{{\sqrt 2 }}(\hat a - \hat b{{\rm{e}}^{i\theta }})$$ (2)
      $${\hat d_2} = \frac{1}{{\sqrt 2 }}(\hat a + \hat b{{\rm{e}}^{i\theta }})$$ (3)

      式中:$\hat a$为从分束器耦合进的真空场;$\hat b$为雷达回波的信号场;$\theta $为两束光场之间的相对位相,此时$\theta = 0$。之后分别由探测器PD1和PD2进行自零拍联合探测,探测器输出的光电流表示为:

      $${i_{{d_1}}} = \hat d_1^\dagger {\hat d_1} = \frac{1}{2}({\hat a^\dagger }\hat a - {\hat a^\dagger }\hat b{{\rm{e}}^{i\theta }} - {\hat b^\dagger }\hat a{{\rm{e}}^{ - i\theta }} + {\hat b^\dagger }\hat b)$$ (4)
      $${i_{{d_2}}} = \hat d_2^\dagger {\hat d_2} = \frac{1}{2}({\hat a^\dagger }\hat a + {\hat a^\dagger }\hat b{e^{i\theta }} + {\hat b^\dagger }\hat a{e^{ - i\theta }} + {\hat b^\dagger }\hat b)$$ (5)

      利用线性化算符关系,明亮光场的产生和湮灭算符可表示为光场幅度的平均值和量子涨落之和,即$\hat a = \alpha + \delta \hat a,{\rm{ }}\hat b = \beta + \delta \hat b$,将此式代入公式(4)和公式(5)得两探测器输出光电流的和与差分别为:

      $$ \begin{split} {i_ + } =& {i_{{d_2}}} + {i_{{d_1}}} = {{\hat a}^\dagger }\hat a + {{\hat b}^\dagger }\hat b =\\ & {\left| \alpha \right|^2} + \alpha \delta {{\hat a}^\dagger } + {\alpha ^ * }\delta \hat a + {\left| \beta \right|^2} +\\ & \beta \delta {{\hat b}^\dagger } + {\beta ^ * }\delta \hat b\\ \end{split} $$ (6)
      $$ \begin{split} {i_ - } = &{i_{{d_2}}} - {i_{{d_1}}} = {{\hat a}^\dagger }\hat b{{\rm{e}}^{i\theta }} + {{\hat b}^\dagger }\hat a{{\rm{e}}^{ - i\theta }} = \\ & {\alpha ^ * }\beta {{\rm{e}}^{i\theta }} + {\beta ^ * }\alpha {{\rm{e}}^{ - i\theta }} + {\alpha ^ * }\delta \hat b{{\rm{e}}^{i\theta }} + \\ & \alpha \delta {{\hat b}^\dagger }{{\rm{e}}^{ - i\theta }} + \beta \delta {{\hat a}^\dagger }{{\rm{e}}^{i\theta }} + {\beta ^ * }\delta \hat a{{\rm{e}}^{ - i\theta }} \\ \end{split} $$ (7)

      由于在自零拍探测中,$\hat b$近似为真空场,其平均值$\beta = 0$,所以有:

      $${i_ + } = {\left| \alpha \right|^2} + \alpha \delta {\hat a^\dagger } + {\alpha ^ * }\delta \hat a$$ (8)
      $${i_ - } = {\alpha ^ * }\delta \hat b + \alpha \delta {\hat b^\dagger }$$ (9)

      所以,光电流和与差的起伏分别为:

      $$\left\langle {{\delta ^2}{i_ + }} \right\rangle = \alpha (\delta {\hat a^\dagger } + \delta \hat a) = \alpha {X_a}$$ (10)
      $$\left\langle {{\delta ^2}{i_ - }} \right\rangle = \alpha (\delta \hat b + \delta {\hat b^\dagger }) = \alpha {X_b}$$ (11)

      由公式(10)和公式(11)可以看出,光电流差的起伏可作为散粒噪声基准,而光电流和的起伏为信号光场正交振幅分量的量子起伏,所以在接收端利用低噪声压缩态光场代替相干态光场可以降低信号噪声基底,从而提高信号信噪比,实现量子增强探测,并且量子压缩态光场压缩度越大增强效果越显著。

    • 根据理论分析可知,制备高压缩度的压缩态光场是增强激光雷达探测性能的关键因素之一,而提高压缩态光场的压缩度主要有三个方面:低噪声单频激光器、低系统损耗以及高位相稳定。利用腔增强参量下转换过程,设计低损耗参量振荡腔以及高增益低噪声平衡自零拍探测系统等可以使压缩态光场的压缩度有明显提高。基于压缩态光场的量子增强激光雷达探测实验装置如图3所示,低噪声双频激光器(山大宇光,FG-ⅧB)直接输出1064 nm基频光和532 nm泵浦光,1064 nm基频光经过分束器(BS)分成两束,一束作为种子光经过双色分束镜(DBS)与532 nm泵浦光共同入射到光学参量下转换腔(OPA)进行参量过程。当调节参量腔的种子光功率为30 mW并锁定泵浦光和种子光相对位相为π时,OPA输出明亮振幅压缩态光场。

      图  3  基于压缩态光场的量子增强激光雷达探测方案装置图。HR:高反镜,AOM:声光调制器,BS:分束器,DBS:双色分束器,OPA:光学参量放大器,PBS1-2:偏振分束棱镜,PD:光电探测器,SA:频谱分析仪

      Figure 3.  Experimental setup of quantum enhanced LiDAR detection based on the squeezed state light field. HR: high reflectivity mirror; AOM: audio-optical modulator; BS: beam splitter; DBS: dichromatic beam splitter; OPA: optical parameter amplifier; PBS1-2: polarization beam splitter; PD: photodetector; SA: spectrum analyzer

      将剩余1064 nm基频光作为主振激光,其最大功率为100 mW。为了稳定模拟目标多普勒信息,稳定验证量子增强探测,采用声光调制器(Brimrose,EF-100-30-1064)进行移频。由于所制备的压缩态光场在5 MHz分析频率处压缩度最高,然而所采用声光调制器工作的中心频率为(80±15) MHz,所以采用两个声光调制器组成的光学多普勒频移系统进行移频。主振激光经过分束器(BS)后首先通过第一个调制器工作在+1级衍射(驱动频率为80 MHz),另一个工作在−1级衍射(驱动频率为85 MHz),即主振激光相对于本振激光存在5 MHz的频移。对于1064 nm主振激光,回波信号每移频1 MHz对应目标移动速度为0.5 m/s。将移频之后的主振激光耦合到单模光纤中(耦合效率为80%),经过发射系统望远镜(Telescope1,放大倍数×2)照射到一个静止漫反射目标上,通过接收望远镜(Telescope2,放大倍数×10)接收回波信号并耦合进入光纤中进行整形滤波。输出的回波信号收集到单模光纤中进行空间模式过滤,经过空间模式匹配系统后与本地振荡光在偏振分束棱镜振分束棱镜PBS1上耦合,再通过半波片和偏振分束棱镜PBS2进行干涉耦合。为了使干涉耦合效率调节到最佳,进而提高探测效率,最终采用全反镜代替漫反射目标,在回波信号较强时,调整压缩态光场以及模拟回波信号之间干涉耦合效率到99%,耦合后信号经过自零拍探测系统进行高效探测,最后将得到的交流信号输入到频谱分析仪(是德科技,N9020A)进行数据处理。

    • 首先,利用平衡零拍探测方法测量光学参量振荡腔直接输出压缩态光场的压缩度,实验结果如图4量子噪声极限(如图4中的曲线(a)所示);注入压缩态光场并扫描本地振荡光光场位相时,探测系统输出信号为压缩态光场噪声谱(如图4中的曲线(b)所示)。从结果中可知,所制备的压缩态光场压缩分量噪声低于散粒噪声基准6 dB,反压缩分量噪声高于散粒噪声基准12 dB,分析频率为5 MHz。需要指出的是,课题组在实验平台上已经实现了13.8 dB压缩态光场制备[21],但由于实验平台上装置复杂,耐噪声能力较差,无法在实验室外的环境下长期稳定地进行量子雷达方案的验证。为了提高压缩光源系统的稳定性并考虑集成化和实用化,进行了一系列优化配置,最终实现了尺寸为50 cm×50 cm×15 cm、输出压缩度为6 dB的集成量子压缩光源,其全封闭式外壳具备外场环境下的工作能力是量子光源面向实际应用的重要前提。

      图  4  集成压缩态光场压缩度测量结果((a) 量子噪声极限;(b) 压缩态光场噪声谱;(c) 压缩态光场噪声谱最低压缩度)

      Figure 4.  Measurement results of squeezing level of the integrated squeezed light field ((a) Quantum noise limit; (b) Noise spectrum of squeezed state light field; (c) Minimum squeezed degree of noise spectrum of squeezed state light field)

      其次,对雷达回波信号进行高效探测,实验结果如图5所示。根据理论分析,利用加法器将自零拍探测系统中两个探测器交流信号进行相加后的信号为回波信号的噪声谱(如图5中的曲线(a)所示);利用减法器将自零拍探测系统中两个探测器交流信号进行相减后的信号为散粒噪声基准的噪声谱(如图5中的曲线(b)所示)。

      图  5  利用自零拍探测系统进行量子增强多普勒信息探测结果((a) 压缩光注入的回波信号噪声谱;(b) 散粒噪声基准噪声谱;(c) 相干光注入的回波信号噪声谱)

      Figure 5.  Measured results of quantum enhanced Dopplor information detection by self-homodyne detection system ((a) Noise spectrum of squeezed light injection echo signal; (b) Noise spectrum of shot noise datum; (c) Noise spectrum of coherent light injection echo signal)

      为了与传统相干激光雷达性能进行对比分析,需要将实验装置中OPA的泵浦光挡住并锁定其腔长,此时其输出与压缩光空间模式相同的相干态光场,通过调节输出种子光功率可以让其输出相干态光场功率与压缩光功率相同,以此代替压缩态光场进行实验比较,其在测量相同回波信号的测量结果如图5中的曲线(c)所示。从实验结果可以看出当回波信号强度相同时(均为−70 dBm),传统相干激光雷达中的噪声基底比压缩态光场量子增强雷达高3 dB。即由于自零拍探测系统量子效率、传输损耗等因素影响,集成化后得到的6 dB量子压缩光源注入激光雷达接收端对回波信号进行探测,最终可实现量子增强激光雷达多普勒信息探测灵敏度3 dB的提升。从理论以及实验结果分析可知提升压缩态光场压缩度、降低传输损耗以及提升探测系统量子效率可以进一步增强探测灵敏度。

    • 为了克服传统激光雷达性能受限于量子噪声极限的影响,文中研究了基于连续变量量子压缩态光场增强传统激光雷达探测技术。通过自主研发的集成化量子压缩光源,利用声光调制器移频模拟探测目标多普勒信息,并在接收端引入低噪声量子压缩态光场代替相干态光场进行量子增强探测,之后用自零拍探测技术对回波信号进行高效探测。与传统激光雷达相比,6 dB压缩态光场可以实现量子增强激光雷达多普勒信息探测灵敏度3 dB的提高,从而验证了量子压缩光注入的量子增强激光雷达方案,为传统激光雷达中多普勒信息等微弱信号探测提供更有效的技术手段。

参考文献 (21)

目录

    /

    返回文章
    返回