留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽光谱实入瞳远心中继光学系统设计

常凌颖 张强 邱跃洪 张荣

常凌颖, 张强, 邱跃洪, 张荣. 宽光谱实入瞳远心中继光学系统设计[J]. 红外与激光工程, 2021, 50(10): 20210091. doi: 10.3788/IRLA20210091
引用本文: 常凌颖, 张强, 邱跃洪, 张荣. 宽光谱实入瞳远心中继光学系统设计[J]. 红外与激光工程, 2021, 50(10): 20210091. doi: 10.3788/IRLA20210091
Chang Lingying, Zhang Qiang, Qiu Yuehong, Zhang Rong. Design of telecentric relay optical system with broadband and real entrance pupil[J]. Infrared and Laser Engineering, 2021, 50(10): 20210091. doi: 10.3788/IRLA20210091
Citation: Chang Lingying, Zhang Qiang, Qiu Yuehong, Zhang Rong. Design of telecentric relay optical system with broadband and real entrance pupil[J]. Infrared and Laser Engineering, 2021, 50(10): 20210091. doi: 10.3788/IRLA20210091

宽光谱实入瞳远心中继光学系统设计

doi: 10.3788/IRLA20210091
基金项目: 国家自然科学基金(61475190)
详细信息
    作者简介:

    常凌颖,女,副教授,硕士/博士生导师,博士,主要从事成像光谱、光学设计方面的研究

    通讯作者: 张强,男,硕士生,主要从事成像光谱、光学设计方面的研究。
  • 中图分类号: TH744

Design of telecentric relay optical system with broadband and real entrance pupil

  • 摘要: 红外光谱成像系统、光场成像系统、光学显微系统、偏振干涉成像系统、复眼成像系统、环带式全景光学系统、多尺度成像系统及头戴式增强显示系统等光学系统中,通常需要中继光学系统来实现光路衔接、配曈、偏转等。研究了现有中继光学系统结构,介绍了光阑前置即具有实入曈的像方远心离轴三反光学系统的设计方法及自由曲面的描述方法,完成了满足设计参数的具有实入瞳的远心中继光学系统仿真设计,系统各镜采用XY多项式描述的自由曲面离轴三反光学系统结构。CODEV仿真设计结果表明,在工作谱段0.4~5.0 μm、焦距400 mm、F数3、视场角2ω=8°下,系统MTF(Modulation Transfer Function)接近于衍射极限,畸变小于1%,成像质量良好。
  • 图  1  同轴三反光学系统结构图

    Figure  1.  Schematic diagram of coaxial three-mirror optical system

    图  2  光阑位置示意图

    Figure  2.  Diagram of position of aperture stop

    图  3  同轴三反光学系统结构图

    Figure  3.  Structural diagram of coaxial three-mirror optical system

    图  4  中继光学系统结构图

    Figure  4.  Structural diagram of relay optical system

    图  5  不同频率下中继光学系统MTF图

    Figure  5.  MTF of relay optical system under different frequencies

    图  6  中继光学系统畸变图

    Figure  6.  Distortion of relay optical system

    图  7  中继光学系统像差曲线

    Figure  7.  Aberration curve of relay optical system

    图  8  中继光学系统点列图

    Figure  8.  Spot diagram of relay optical system

    表  1  光学设计参数

    Table  1.   Parameter of optical design

    System parameterRequirements
    Spectral band/μm0.4-5.0
    Focal length/mm400
    F number3
    Field of view/(°)2ω=8
    Real entrance pupilAperture stop front;placed outside the
    optical system structure
    下载: 导出CSV

    表  2  离轴三反光学系统结构参数

    Table  2.   Parameters of off-axis three-mirror optical system

    Radius/mmThickness/mmDecenter/mmTilt/(°)
    First mirror−458.7815−107.591758.710.19
    Second mirror−167.2861134.61018.8110.09
    Third mirror−355.8577−107.8693−256.96−28.66
    下载: 导出CSV

    表  3  各镜的自由曲面参数

    Table  3.   Parameters of free-form surface of each mirror

    ParametersFirst mirrorSecond mirrorThird mirror
    x2−7.4433e-0050.00031.8133e-005
    y23.2701e-0050.00041.8497e-005
    x2y3.6196e-0071.5541e-006−3.4655e-007
    y31.8164e-0071.2668e-0066.6196e-008
    x41.1032e-0091.2601e-0087.4445e-010
    x2y21.5319e-0091.6041e-008−2.6963e-009
    y47.6358e-0109.3326e-0092.0005e-009
    x2y33.1651e-0133.5955e-0111.7453e-011
    x4y−2.0905e-012−1.9364e-0101.8144e-011
    y5−2.8706e-013−9.5697e-012−8.4075e-012
    x62.4865e-0152.0033e-0136.4256e-014
    x4y2−3.6701e-015−2.0303e-013−5.8383e-014
    x2y46.3076e-0164.5629e-013−5.2467e-014
    y6−3.5416e-0166.6398e-0141.6164e-014
    下载: 导出CSV
  • [1] Liu Zhiying, Gao Liuxu, Huang Yunhan. Design of continuous zoom medium-wave infrared spectral imaging system based on offner scheme [J]. Infrared and Laser Engineering, 2019, 48(7): 0718003. (in Chinese)
    [2] Wang Tengfei, Chen Yonghe, Fu Yuhe. Infrared light field relay imaging system based on micro field lens array [J]. Infrared and Laser Engineering, 2020, 49(7): 20190548. (in Chinese)
    [3] Li Can, Guo Banghui, Sun Zhu. Optical system design of multispectral achromatic imaging flow cytometer [J]. Acta Optica Sinica, 2016, 36(9): 0922002. (in Chinese)
    [4] Wang Hongliang, Liang Jingqiu, Liang Zhongzhu, et al. Analysis and design of Fourier transform polarization interference imaging system [J]. Chinese Optics, 2019, 12(3): 638-648. (in Chinese) doi:  10.3788/co.20191203.0638
    [5] 于晓丹. 大视场多光谱复眼相机的成像系统设计[D]. 中国科学院西安光学精密机械研究所, 2019.

    Yu Xiaodan. Design of imaging system for the multispectral compound eye camera with a large-field of view[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2019. (in Chinese)
    [6] 周向东. 超大视场高分辨率全景环带光学系统设计[D]. 浙江大学, 2016.

    Zhou Xiangdong. Suoer-wide angle high-resolution panoramic annular lens design[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
    [7] 吴雄雄. 基于多尺度成像原理的宽视场高分辨光学系统设计与研制[D]. 西安电子科技大学, 2018.

    Wu Xiongxiong. Design and development of wide FOV high resolution optical system based on multisacle imaging principle[D]. Xi’an: Xidian University, 2018. (in Chinese)
    [8] Ru Zhibing, Liu Bing, Li Shuangquan, et al. Design and experiment for polarization imaging system of low-light-level image intensifier [J]. Journal of Applied Optics, 2015, 36(3): 435-441. (in Chinese) doi:  10.5768/JAO201536.0304002
    [9] 张智南. 用于海洋遥感的宽覆盖干涉光谱成像技术研究[D]. 中国科学院大学中国科学院西安光学精密机械研究所, 2016.

    Zhang Zhinan. Research on the fourier transform imaging spectrometer of wide swath for the ocean spectrum[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2016. (in Chinese)
    [10] 王琪. 分孔径实时偏振红外成像仪光学系统设计研究[D]. 中国科学院长春光学精密机械与物理研究所, 2017.

    Wang Qi. Study on decentered aperture-divided optical system for infrared polarization imager[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017. (in Chinese)
    [11] Cheng Niankai, Wang Lizhi, Huang Hua. Design of computational imaging spectrometry featuring high light utilization and high precision [J]. Electro-Optical Technology Application, 2019, 34(1): 9-15. (in Chinese) doi:  10.3969/j.issn.1673-1255.2019.01.003
    [12] Cao Chao, Liao Zhiyuan, Bai Yu, et al. Initial configuration design of off-axis reflective optical system based on vector aberration theory [J]. Acta Physica Sinica, 2019, 68(13): 134201. (in Chinese)
    [13] Thompson K P, Rolland J P. Freeform optical surfaces: a revolution in imaging optical design [J]. Optics and Photonics News, 2012, 23(6): 30-35. doi:  10.1364/OPN.23.6.000030
    [14] Xue Donglin, Zheng Ligong, Zhang Feng. Off-axis three-mirror based on freeform mirror [J]. Optics and Precision Engineering, 2011, 19(12): 2813-2820. (in Chinese) doi:  10.3788/OPE.20111912.2813
    [15] 王庆晨. 基于像方远心的红外目标模拟器光学设计[D]. 哈尔滨工业大学, 2018.

    Wang Qingchen. Optical design of infrared target simulator based on telecentric structure [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [16] 刘晓梅. 反射式宽视场高分辨率成像光谱仪光学系统研究[D]. 中国科学院长春光学精密机械与物理研究所, 2013.

    Liu Xiaomei. Research on the reflective optical system of imaging spectrometer with wide-field and high-resolution[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese)
    [17] Liu Xiaomei, Xiang Yang. Research and design of telecentric off-axis three-mirror system with real entrance pupil [J]. Acta Optica Sinica, 2011, 31(11): 1122002. (in Chinese)
    [18] Zhang Lei, Liu Dong, Shi Tu, et al. Optical free-form surfaces testing technologies [J]. Chinese Optics, 2017, 10(3): 283-299. (in Chinese) doi:  10.3788/co.20171003.0283
    [19] Fuerschbach Kyle, Davis Gregg E, Thompson Kevin P, et al. Assembly of afreeform off-axis optical system employing three φ-polynomial Zernike mirrors. [J]. Optics Letters, 2014, 39(10): 2896-2899. doi:  10.1364/OL.39.002896
    [20] Ye J F, Chen L, Li X H, et al. Review of optical freeform surface representation technique and its application [J]. Optical Engineering, 2017, 56(11): 110901.
    [21] Bauer A, Schiesser E M, Rolland J P. Starting geometry creation and design method for freeform optics [J]. Nature Communications, 2018, 9(1): 1756. doi:  10.1038/s41467-018-04186-9
  • [1] 高荣, 毛祥龙, 李锦鹏, 徐志晨, 谢永军.  自由曲面离轴四反全铝光机红外探测系统(特邀) . 红外与激光工程, 2023, 52(7): 20230338-1-20230338-11. doi: 10.3788/IRLA20230338
    [2] 周丽军, 杨通, 程德文, 王涌天.  基于方域正交多项式自由曲面的成像系统设计方法(特邀) . 红外与激光工程, 2023, 52(7): 20230317-1-20230317-14. doi: 10.3788/IRLA20230317
    [3] 任成明, 孟庆宇, 秦子长.  大型自由曲面离轴三反光学系统降敏设计(特邀) . 红外与激光工程, 2023, 52(7): 20230287-1-20230287-11. doi: 10.3788/IRLA20230287
    [4] 许宁晏, 高志山, 陈露, 黄静, 邹宇通, 袁群.  应用自由曲面的紧凑型长焦手机镜头设计(特邀) . 红外与激光工程, 2023, 52(7): 20230322-1-20230322-10. doi: 10.3788/IRLA20230322
    [5] 钱壮, 莫言, 樊润东, 谈昊, 冀慧茹, 马冬林.  制冷型大面阵自由曲面离轴三反光学系统设计(特邀) . 红外与激光工程, 2023, 52(7): 20230339-1-20230339-9. doi: 10.3788/IRLA20230339
    [6] 王合龙, 陈建发, 黄浩阳, 崔泽曜.  基于自由曲面的离轴三反光学系统研制 . 红外与激光工程, 2023, 52(3): 20220523-1-20220523-8. doi: 10.3788/IRLA20220523
    [7] 许宁晏, 陈露, 黄静, 邹宇通, 袁群, 高志山.  自由曲面成像光学系统的初始结构设计方法 . 红外与激光工程, 2022, 51(2): 20210852-1-20210852-12. doi: 10.3788/IRLA20210852
    [8] 张鹏泉, 陈佳琪, 史屹君.  离轴三反光学系统中反射膜的研制 . 红外与激光工程, 2022, 51(9): 20210900-1-20210900-5. doi: 10.3788/IRLA20210900
    [9] 芮丛珊, 曾春梅, 冯志强, 夏成樑, 洪洋.  离轴反射式头戴显示光学系统的自由曲面设计方法 . 红外与激光工程, 2022, 51(10): 20211119-1-20211119-11. doi: 10.3788/IRLA20211119
    [10] 蒋婷婷, 冯华君, 李奇.  自由曲面变焦的内调焦式光学系统设计 . 红外与激光工程, 2021, 50(4): 20200290-1-20200290-8. doi: 10.3788/IRLA20200290
    [11] 王晓艳, 徐高魁.  高隔离度激光通信终端光学系统设计 . 红外与激光工程, 2021, 50(7): 20200521-1-20200521-5. doi: 10.3788/IRLA20200521
    [12] 缪麟, 田博宇, 孙年春, 张彬.  基于量子遗传算法的自由曲面离轴反射光学系统设计 . 红外与激光工程, 2021, 50(12): 20210365-1-20210365-9. doi: 10.3788/IRLA20210365
    [13] 凌明椿, 宋茂新, 洪津, 孙晓兵, 陶菲.  离轴三反同时偏振成像仪光机设计 . 红外与激光工程, 2019, 48(5): 518001-0518001(10). doi: 10.3788/IRLA201948.0518001
    [14] 赵宇宸, 何欣, 张凯, 刘强, 崔永鹏, 孟庆宇.  轻小型大视场自由曲面离轴光学系统设计 . 红外与激光工程, 2018, 47(12): 1218001-1218001(7). doi: 10.3788/IRLA201847.1218001
    [15] 姜晰文, 贾学志, 丛杉珊.  自由曲面在制冷型离轴三反光学系统的应用 . 红外与激光工程, 2018, 47(9): 918004-0918004(7). doi: 10.3788/IRLA201847.0918004
    [16] 刘军, 黄玮.  反射式自由曲面头盔显示器光学系统设计 . 红外与激光工程, 2016, 45(10): 1018001-1018001(6). doi: 10.3788/IRLA201645.1018001
    [17] 孟祥翔, 刘伟奇, 张大亮, 姜国华, 朱秀庆, 杨建明.  双自由曲面大视场头盔显示光学系统设计 . 红外与激光工程, 2016, 45(4): 418004-0418004(6). doi: 10.3788/IRLA201645.0418004
    [18] 王蕴琦, 刘伟奇, 张大亮, 孟祥翔, 康玉思, 魏忠伦.  基于传递矩阵的宽视场离轴三反光学系统设计 . 红外与激光工程, 2016, 45(4): 418003-0418003(6). doi: 10.3788/IRLA201645.0418003
    [19] 孟庆宇, 汪洪源, 王严, 纪振华, 王栋.  大线视场自由曲面离轴三反光学系统设计 . 红外与激光工程, 2016, 45(10): 1018002-1018002(8). doi: 10.3788/IRLA201645.1018002
    [20] 郭永祥, 李永强, 廖志波, 王静怡.  新型离轴三反射光学系统设计 . 红外与激光工程, 2014, 43(2): 546-550.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  189
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-05-12
  • 刊出日期:  2021-10-20

宽光谱实入瞳远心中继光学系统设计

doi: 10.3788/IRLA20210091
    作者简介:

    常凌颖,女,副教授,硕士/博士生导师,博士,主要从事成像光谱、光学设计方面的研究

    通讯作者: 张强,男,硕士生,主要从事成像光谱、光学设计方面的研究。
基金项目:  国家自然科学基金(61475190)
  • 中图分类号: TH744

摘要: 红外光谱成像系统、光场成像系统、光学显微系统、偏振干涉成像系统、复眼成像系统、环带式全景光学系统、多尺度成像系统及头戴式增强显示系统等光学系统中,通常需要中继光学系统来实现光路衔接、配曈、偏转等。研究了现有中继光学系统结构,介绍了光阑前置即具有实入曈的像方远心离轴三反光学系统的设计方法及自由曲面的描述方法,完成了满足设计参数的具有实入瞳的远心中继光学系统仿真设计,系统各镜采用XY多项式描述的自由曲面离轴三反光学系统结构。CODEV仿真设计结果表明,在工作谱段0.4~5.0 μm、焦距400 mm、F数3、视场角2ω=8°下,系统MTF(Modulation Transfer Function)接近于衍射极限,畸变小于1%,成像质量良好。

English Abstract

    • 在红外光谱成像系统[1]、光场成像系统[2]、光学显微系统[3]、偏振干涉成像系统[4]、复眼成像系统[5]、环带式全景光学系统[6]、多尺度成像系统[7]及头戴式增强显示系统等光学系统中都有中继光学系统。中继系统在上述光学系统中主要具有以下作用:(1) 再次成像及各子系统满足瞳窗匹配原则,例如在红外光谱成像系统中,由于探测器组件的位置不能平移及倾斜,需要中继光学系统将光谱成像系统所成的像再次成像于探测器焦平面上,并且使出瞳位置于冷光阑匹配[1];在光学显微系统中,中继光路的作用是将角度扫描器件的像成到物镜后瞳,以实现光束在物镜后瞳偏转[3];(2) 像差校正,例如在环带式全景光学系统中,中继系统既要完成成像任务,还需要对整个光学系统的像差进行校正[6]

      2015年,西安应用光学研究所设计的基于微光像增强器的偏振成像系统中的中继系统采用透射式光学系统结构[8]。2016年,中国科学院西安光学精密机械研究所设计的用于海洋遥感的干涉光谱成像仪中的中继系统采用基于Dyson的折反式光学系统结构[9];中国科学院长春光学精密机械与物理研究所设计的分孔径实时偏振成像光谱仪的中继系统为物方远心透射式光学系统结构[10]。2019年,北京理工大学设计的高光利用率精度计算光谱成像系统的中继系统为多个透镜互相胶合的透射式光学系统结构[11];中国科学院长春光学精密机械与物理研究所设计的傅里叶变换型线偏振干涉成像系统[4];中国科学院西安光学精密机械研究设计的复眼相机成像系统中的中继系统均为透射式光学系统结构[5]。2020年,中国科学院上海技术物理研究所设计的基于微场镜阵列的红外光场成像系统中的中继系统为透射式结构[2]

      离轴三反系统具有无遮拦、像质好、结构紧凑、材料选择灵活、可实现高分辨率和高能量利用率等特点[12],在光学领域发挥着越来越大的作用,具有较好的发展前景。自由曲面具有设计自由度多、校正像差能力强等特点[13],随着加工制造技术的日趋成熟,也被广泛地应用到光学系统设计中。近年来,通过将两者结合提升光学系统性能成为研究热点。文中设计了一种工作在较宽光谱的中继光学系统,系统结构采用离轴三反光学系统,面型为自由曲面,工作谱段0.4~5.0 μm,焦距400 mm,F数3,视场角2ω=8°, 像质良好,实现了具有实入瞳、像方远心的反射式中继光学系统。

    • 光学系统设计参数见表1

      表 1  光学设计参数

      Table 1.  Parameter of optical design

      System parameterRequirements
      Spectral band/μm0.4-5.0
      Focal length/mm400
      F number3
      Field of view/(°)2ω=8
      Real entrance pupilAperture stop front;placed outside the
      optical system structure

      所设计的中继光学系统的工作谱段较宽,反射式光学系统能通过所有谱段的光波,不受色差和二级光谱色差的影响,适用于宽光谱、大波段的光学系统。反射式光学系统主要分为同轴反射式和离轴反射式两种,同轴反射光学系统普遍存在中心遮拦现象,该现象使进入光学系统的能量减少,从而影响成像质量。离轴反射系统则避免了这种现象,其中离轴三反光学系统在设计时拥有较多的自由度,能够满足更高的设计要求,从而提供更好的成像质量。离轴三反结构的确定是以同轴三反为基础,同轴三反结构图如图1所示。

      图  1  同轴三反光学系统结构图

      Figure 1.  Schematic diagram of coaxial three-mirror optical system

      其中,d1为主镜与次镜间的距离,d2为次镜与三镜间的距离,F为物方焦点,$ {l}_{f} $为物方焦点与主镜的距离。

      根据几何光学、三级像差等理论,可得同轴情况下三反系统结构参数与遮拦比的关系为:

      $$ {R}_{1}=\frac{2\left[{\alpha }_{1}{\left(1-{\alpha }_{2}\right)}^{2}+{\alpha }_{2}{\left(1-{\alpha }_{1}\right)}^{2}\right]}{1-{\alpha }_{1}}{f}' $$ (1)
      $$ {R}_{2}=\frac{2{\alpha }_{1}\left[{\alpha }_{1}{\left(1-{\alpha }_{2}\right)}^{2}+{\alpha }_{2}{\left(1-{\alpha }_{1}\right)}^{2}\right]}{1+{\alpha }_{1}\left({\alpha }_{2}-2\right)}{f}' $$ (2)
      $$ {R}_{3}=\frac{2{\alpha }_{1}\left[{\alpha }_{1}{\left(1-{\alpha }_{2}\right)}^{2}+{\alpha }_{2}{\left(1-{\alpha }_{1}\right)}^{2}\right]}{1+{\alpha }_{1}\left({\alpha }_{1}+{\alpha }_{2}-3\right)}{f}' $$ (3)
      $$ {d}_{1}=\left[{\alpha }_{1}{\left(1-{\alpha }_{2}\right)}^{2}+{\alpha }_{2}{\left(1-{\alpha }_{1}\right)}^{2}\right]{f}' $$ (4)
      $$ {d}_{2}=-\left[{\alpha }_{1}{\left(1-{\alpha }_{2}\right)}^{2}+{\alpha }_{2}{\left(1-{\alpha }_{1}\right)}^{2}\right]{f}' $$ (5)
      $$ {d}_{3}={\alpha }_{1}{\alpha }_{2}{f}' $$ (6)
      $$ {l}_{f}=\dfrac{{R}_{1}}{2}×\dfrac{2{d}_{1}\left({R}_{3}+2{d}_{2}-{R}_{2}\right)+{R}_{2}\left({R}_{3}+2{d}_{2}\right)}{2{d}_{1}\left({R}_{3}+2{d}_{2}-{R}_{2}\right)+{R}_{2}\left({R}_{3}+2{d}_{2}\right)-{R}_{1}\left({R}_{3}+2{d}_{2}-{R}_{2}\right)}= \dfrac{{\alpha }_{1}-\left(1+{\alpha }_{1}{\alpha }_{2}\right)\left[{\alpha }_{1}{\left(1-{\alpha }_{2}\right)}^{2}+{\alpha }_{2}{\left(1-{\alpha }_{1}\right)}^{2}\right]}{{\alpha }_{2}{\alpha }_{1}^{2}}{f}' $$ (7)

      式中:R1R2R3分别为主镜、次镜及三镜的曲率半径;α1α2为次镜对主镜与三镜对次镜的遮拦比;$ {f}' $为总焦距[14]

      光学系统一般通过孔径光阑与光学系统的物方焦平面重合或接近实现像方远心或准远心,像方远心光路的出瞳位置位于无穷远处或较远处,出射光各视场主光线接近平行,易实现瞳孔匹配、光路衔接、分光等[15]。且光学系统具有实入瞳的需求,光学系统孔径光阑位置要位于主镜前,此时物方焦点为实焦点,即$ {l}_{f} $小于零。

      根据三级像差理论得到光学系统中的球差、彗差、像散的系数表达式为:

      $$ \begin{split} {{S}}_{{\text{Ⅰ}}}=&\frac{1}{4}\left[\left({e}_{1}^{2}-1\right)-{e}_{2}^{2}{\alpha }_{1}{\left(1+{\alpha }_{1}\right)}^{3}+{e}_{3}^{2}{\alpha }_{1}{\left(1+{\alpha }_{1}\right)}^{4}-\right.\\ &\left.{\alpha }_{1}^{2}\left(1+{\alpha }_{1}\right){\left(1-{\alpha }_{1}\right)}^{2}\right] \end{split} $$ (8)
      $$ \begin{split} {{S}}_{{\text{Ⅱ}}}=&\frac{1}{4}\left[{e}_{2}^{2}{(1-\alpha }_{1}{)\left(1+{\alpha }_{1}\right)}^{3}+{e}_{3}^{2}{(\alpha }_{1}^{2}-2){\left(1+{\alpha }_{1}\right)}^{3}-\right.\\ &\left.{\alpha }_{1}^{5}{+2{\alpha }_{1}^{4}+\alpha }_{1}^{3}-3{\alpha }_{1}^{2}-1\right] \end{split} $$ (9)
      $$ \begin{split} {{S}}_{{\text{Ⅲ}}}=&\frac{1}{4{\alpha }_{1}}\left[{e}_{2}^{2}{\left(1-{\alpha }_{1}\right)}^{5}+{e}_{3}^{2}{{(\alpha }_{1}^{2}-2)}^{2}{\left(1+{\alpha }_{1}\right)}^{2}-{\alpha }_{1}^{6}+3{\alpha }_{1}^{5}- \right.\\ &\left.6\alpha _{1}^{3}+2{\alpha }_{1}^{2}{+\alpha }_{1}+1\right] \end{split} $$ (10)

      式中:e12e22e32为主镜、次镜及三镜的二次非球面系数。为了使结构更合理,对三级像差进行校正,令SSS均为零,求解出各镜的二次非球面系数[16]。根据上述分析及参考文献[17],取遮拦比为α1=0.5,α2=1,已知焦距为400 mm,根据公式(1)~(7)计算可得,R1=−400 mm、R2=−200 mm、R3=−400 mm、d1=−100 mm、d2=100 mm、d3=−200 mm、$ {l}_{f} $=−200 mm。又根据公式(8)~(10)求得二次非球面系数e12=1.13、e22=−0.38、e32=−0.26。

      在离轴三反光学系统中,孔径光阑通常位于主镜或次镜上。孔径光阑位于主镜上,光学系统的结构较紧凑,可在中间像面加入消杂散光光阑,有利于小视场的光学系统设计;孔径光阑位于次镜上,主镜与三镜关于次镜对称,光学系统可以较好地校正轴外视场的像差,适用于大视场光学系统的设计[14]。文中光学系统的孔径光阑位于主镜前满足实入瞳需求,且中继系统要与前面的光学系统或光学器件衔接,其必须位于整体光学系统的结构之外,位置示意图如图2所示。根据上述计算的初始结构参数,且孔径光阑要与光学系统的物方焦平面接近,因此孔径光阑距主镜的距离等于$ {l}_{f} $,将光阑前置量设为200 mm,此时孔径光阑也位于结构外,同轴三反初始结构如图3所示。

      图  2  光阑位置示意图

      Figure 2.  Diagram of position of aperture stop

      图  3  同轴三反光学系统结构图

      Figure 3.  Structural diagram of coaxial three-mirror optical system

      在确保光学系统的孔径光阑位于光学系统结构外的条件下,对上述同轴三反初始结构进行光阑或视场离轴,镜面倾斜,达到避开镜面相互之间的遮拦,使其既满足实入瞳、像方远心需求,又具有良好的成像质量。

    • 在同轴三反结构的基础上进行光阑离轴后,系统实现无遮拦,离轴量为220 mm,此时由于孔径光阑具有偏心量,导致其位于结构内。在优化过程中,以各镜的曲率半径、二次非球面系数、偏心量、倾斜角度及镜间距作为优化变量,但优化后不能同时满足孔径光阑位于结构外和像质良好的要求,并且随着光阑前置量的增加,光学系统愈不对称,光学系统的垂轴像差也愈大,像差校正难度提升,通过逐步提升各镜非球面系数对像质的影响也已经很微弱,此时,通过优化现有变量已经无法使光学系统在孔径光阑位于结构外与像质良好达到平衡,需要引入新的优化变量。

      自由曲面是一类非旋转对称面型,具有较多的自由度,能够有效地校正像差,提高光学系统的成像质量。近年来,随着加工技术的提升,越来越多的研究者将其运用于成像系统中,从而提升光学系统性能,基于自由曲面的成像系统设计关键之一就是选择合适的描述方法[18]

      自由曲面的描述方法一般有参数描述法和多项式描述,参数描述法主要包括贝塞尔曲面、B样条曲面、非均匀有理B样条等,但存在精度不高、加工检测难等问题。多项式描述法一般有泽尼克多项式、Gauss多项式、XY多项式等,在离轴三反光学系统中的自由曲面大都采用泽尼克多项式和XY多项式描述。泽尼克多项式具有在圆域内正交、各多项式的系数之间相互独立、系数间影响较小等特点,表达式为:

      $$ {\textit{z}}=\frac{c{r}^{2}}{1+\sqrt{1-(1+k){c}^{2}{r}^{2}}}+{\sum }_{i=1}^{n}{A}_{i}{Z}_{i}\left(\rho ,\psi \right) $$ (11)

      式中:z为矢高;r为径向值;c为顶点曲率半径;k为二次曲面系数;等号后第一项为标准二次曲面表达式;Ai为泽尼克子项系数;Zi为泽尼克多项式第i[19]

      XY多项式描述的曲面具有能够校正非对称像差、精度高、易于加工等特点,广泛应用于成像光学系统中。XY多项式的表达式为:

      $$ \begin{array}{l} {\textit{z}}\left( {x,y} \right) = \dfrac{{c\left( {{x^2} + {y^2}} \right)}}{{1 + \sqrt {1 - \left( {k + 1} \right){c^2}\left( {{x^2} + {y^2}} \right)} }} + \displaystyle\sum\nolimits_{j = 2}^J {{a_j}{x^m}{y^n}} \\ j = \dfrac{{{{\left( {m + n} \right)}^2} + m + 3n}}{2} + 1 \end{array} $$ (12)

      式中:c为顶点曲率半径;k为圆锥常数;ajxmyn项的系数,jxmyn的总项数,mn均为非负整数且之和大于1。通常自由曲面XY多项式的阶数最多为八次,高阶数会使优化效率降低,由于自由曲面的变量个数较多,模型较为复杂,且非旋转对称面型导致传统的像差理论不再适用,在展开后续优化过程中较为较困难,目前一般采用循序渐进的优化模式,逐步将非球面替换成自由曲面,在此过程中逐步加入像差约束和更为严格的结构控制条件,根据光学系统的像差情况选取表达式中合适的系数进行优化[20]。该模式使每一步优化具有较好的起点,提升了光线追迹速度,缩短了优化时间,也避免了面型产生突变[21]

      在上述光学系统中引入自由曲面,首先分别在各镜上尝试引入自由曲面,优化后发现主镜、三镜为自由曲面时对光阑前置带来的像差校正及像质的影响较大,因此,将主镜及三镜的面型均设为XY多项式表达的自由曲面。优化时,为避免面型产生突变,采用循序渐进的优化模式,并且由于离轴三反光学系统各镜的偏心及倾斜均在YOZ平面,X项只选取偶次项作为优化变量,优化后光阑的前置量为240 mm,但光学系统畸变残余量较大,将次镜用XY多项式表示的自由曲面替换,并逐步提升各镜自由曲面阶数,迭代优化后,光学系统的孔径光阑位于结构外且像质良好,满足设计要求。在后续成像系统中,系统的成像方案将采用像面前分光模式在0.4~1.6 μm、1.6~5.0 μm谱段分别成像,从而获取全波段图像信息。

    • 设计出的宽谱段实入瞳远心中继光学系统结构图如图4所示,结构参数见表2,光学系统的光阑前置量为240 mm,出瞳距为1049.32 mm,为实入瞳准远心光学系统,各镜均为XY多项式描述的自由曲面,参数见表3,利用MTF、畸变曲线、像差曲线及点列图对系统的设计结果进行了分析评价,如图5~图8所示,在用MTF进行评价时,选取了不同的空间频率(50、40、30、20、10 lp/mm)。

      图  4  中继光学系统结构图

      Figure 4.  Structural diagram of relay optical system

      表 2  离轴三反光学系统结构参数

      Table 2.  Parameters of off-axis three-mirror optical system

      Radius/mmThickness/mmDecenter/mmTilt/(°)
      First mirror−458.7815−107.591758.710.19
      Second mirror−167.2861134.61018.8110.09
      Third mirror−355.8577−107.8693−256.96−28.66

      表 3  各镜的自由曲面参数

      Table 3.  Parameters of free-form surface of each mirror

      ParametersFirst mirrorSecond mirrorThird mirror
      x2−7.4433e-0050.00031.8133e-005
      y23.2701e-0050.00041.8497e-005
      x2y3.6196e-0071.5541e-006−3.4655e-007
      y31.8164e-0071.2668e-0066.6196e-008
      x41.1032e-0091.2601e-0087.4445e-010
      x2y21.5319e-0091.6041e-008−2.6963e-009
      y47.6358e-0109.3326e-0092.0005e-009
      x2y33.1651e-0133.5955e-0111.7453e-011
      x4y−2.0905e-012−1.9364e-0101.8144e-011
      y5−2.8706e-013−9.5697e-012−8.4075e-012
      x62.4865e-0152.0033e-0136.4256e-014
      x4y2−3.6701e-015−2.0303e-013−5.8383e-014
      x2y46.3076e-0164.5629e-013−5.2467e-014
      y6−3.5416e-0166.6398e-0141.6164e-014

      图  5  不同频率下中继光学系统MTF图

      Figure 5.  MTF of relay optical system under different frequencies

      图  6  中继光学系统畸变图

      Figure 6.  Distortion of relay optical system

      图  7  中继光学系统像差曲线

      Figure 7.  Aberration curve of relay optical system

      图  8  中继光学系统点列图

      Figure 8.  Spot diagram of relay optical system

      由MTF图可以看出,在空间频率50 lp/mm处,MTF最小为0.540,在空间频率40 lp/mm处,MTF最小为0.631,在空间频率30 lp/mm处,MTF最小为0.724,在空间频率20 lp/mm处,MTF最小为0.820,在空间频率10 lp/mm处,MTF最小为0.911,且均接近于衍射极限;由光学系统的畸变曲线可以看出,最大畸变小于1%;从点列图及像差曲线可以看出,各视场各谱段点列图均方根都远小于艾里斑半径,像面的弥散斑直径均在像元尺寸之内,能量分布较集中,该中继光学系统具有良好的成像质量。

    • 研究并设计了一种基于自由曲面的实入曈像方远心中继光学系统,系统采用离轴三反结构,三镜均为 XY 多项式自由曲面,具有0.6 f′实入瞳,当多光组系统光路衔接中有光束限制时可与该实入瞳相匹配,孔径光阑位于主镜前与系统物方焦平面近似重合,实现了2.5 f′像方准远心。在满足设计参数的前提下系统MTF接近衍射极限,畸变小于1%,成像质量良好。该系统的设计方法对于在仪器前置有光学窗口或其他入射光束有限制装置时,并且需要同时满足具有实入瞳和远心特殊要求的离轴三反光学系统具有一定的参考价值。

参考文献 (21)

目录

    /

    返回文章
    返回