留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烟雾环境中532 nm/1550 nm线偏振光前向传输实验研究

曾祥伟 李亚红 张燕 褚金奎

曾祥伟, 李亚红, 张燕, 褚金奎. 烟雾环境中532 nm/1550 nm线偏振光前向传输实验研究[J]. 红外与激光工程, 2022, 51(3): 20210157. doi: 10.3788/IRLA20210157
引用本文: 曾祥伟, 李亚红, 张燕, 褚金奎. 烟雾环境中532 nm/1550 nm线偏振光前向传输实验研究[J]. 红外与激光工程, 2022, 51(3): 20210157. doi: 10.3788/IRLA20210157
Zeng Xiangwei, Li Yahong, Zhang Yan, Chu Jinkui. Testing linearly polarized light forward propagation in smog at 532 nm/1550 nm wavelengths[J]. Infrared and Laser Engineering, 2022, 51(3): 20210157. doi: 10.3788/IRLA20210157
Citation: Zeng Xiangwei, Li Yahong, Zhang Yan, Chu Jinkui. Testing linearly polarized light forward propagation in smog at 532 nm/1550 nm wavelengths[J]. Infrared and Laser Engineering, 2022, 51(3): 20210157. doi: 10.3788/IRLA20210157

烟雾环境中532 nm/1550 nm线偏振光前向传输实验研究

doi: 10.3788/IRLA20210157
基金项目: 国家自然科学基金(62105136,11904044)
详细信息
    作者简介:

    曾祥伟,男,讲师,博士,主要从事偏振传输、微纳光学器件方面的研究

  • 中图分类号: O439

Testing linearly polarized light forward propagation in smog at 532 nm/1550 nm wavelengths

Funds: National Natural Science Foundation of China (62105136,11904044)
  • 摘要: 针对烟雾环境中偏振前向传输在短波红外波段是否具有偏振信号增强的问题,实验研究了烟雾环境中水平线偏振光在532 nm和1 550 nm波长下的前向传输偏振特性。烟雾环境由烟饼燃烧所制,其主要由悬浮氯化铵颗粒和水汽组成,且氯化铵颗粒在烟饼点燃7~16 min内稳定沉积。搭建了532 nm和1 550 nm两套单波长激光前向传输测试平台,用以测量水平线偏振光在烟雾环境中的前向传输偏振特性。分析测量误差主要由激光源的光强波动误差、测量时间变化误差、偏振器件的安装误差和转角误差引起,计算了532 nm和1 550 nm激光前向传输测试平台的测量误差峰值分别约为1.03%和0.89%。测试烟饼燃烧7~16 min时的偏振状态保持率RoPS,测试结果表明:相比532 nm波长,水平线偏振光在1 550 nm波长前向传输后具有更优异的偏振状态保持特性,且随着烟雾浓度降低,两者之间的偏振状态保持差异逐渐缩小。文中研究通过实验验证了所制烟雾环境中水平线偏振光在1 550 nm波长前向传输后具有优异的偏振信号,这可为短波红外偏振技术的实际应用提供一定的实验支撑。
  • 图  1  烟饼

    Figure  1.  Tobacco pad

    图  2  烟饼燃烧生成的烟雾环境

    Figure  2.  Smoke environment generated by tobacco pad burning

    图  3  测试平台示意图

    Figure  3.  Schematic diagram of testing device

    图  4  532 nm线偏振光前向传输测试装置

    Figure  4.  Experimental setup for 532 nm linearly polarized light for forward transmission

    图  5  1550 nm线偏振光前向传输测试装置

    Figure  5.  Experimental setup for 1550 nm linearly polarized light for forward transmission

    图  6  烟雾环境中1550 nm与532 nm水平线偏振光前向传输的测试结果

    Figure  6.  Test results of linearly polarized light forward propagation in smog at both 532 nm and 1550 nm wavelengths

  • [1] Guo Zhongyi, Wang Xinyang, Li Dekui, et al. Advances on theory and application of polarization information propagation [J]. Infrared and Laser Engineering, 2020, 49(6): 20201013. (in Chinese) doi:  10.3788/IRLA20201013
    [2] Lerner Amit, Nadav Shashar. Polarized Light and Polarization Vision in Animal Sciences[M]. Berlin: Springer, 2014.
    [3] Van der Laan John. Evolution and persistence of circular and linear polarization in scattering environments[D]. Tucson: University of Arizona, 2015.
    [4] Dark J P. A theoretical understanding of circular polarization memory[D]. Merced: UC Merced, 2017.
    [5] Van der Laan J D, Scrymgeour D A, Kemme S A, et al. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths [J]. Applied Optics, 2015, 54(9): 2266-2274. doi:  10.1364/AO.54.002266
    [6] Zeng Xiangwei, Chu Jinkui, Cao Wenda, et al. Visible–IR transmission enhancement through fog using circularly polarized light [J]. Applied Optics, 2018, 57(23): 6817-6822. doi:  10.1364/AO.57.006817
    [7] David Chenault, Larry Pezzaniti. Polarization imaging through scattering media[C]//Polarization Analysis, Measurement, and Remote Sensing Ⅲ, 2000, 4133: 124-133.
    [8] 段锦, 付强, 张肃, 等. 烟雾环境下偏振光传输特性研究[M]. 北京: 科学出版社, 2020.1.

    Duan Jin, Fu Qiang, Zhang Su, et al. Research on the propagation characteristics of polarized light in smoke environments[M]. Beijing: Science Press, 2020. (in Chinese)
    [9] Xie Meilin, Liu Peng, Ma Caiwen, et al. Research on active polarization imaging experiments and key technologies in smoke and dust environment [J]. Optik, 2019, 198: 163309. doi:  10.1016/j.ijleo.2019.163309
    [10] Zhang Su, Zhan Juntong, Fu Qiang, et al. Propagation of linear and circular polarization in a settling smoke environment: theory and experiment [J]. Applied Optics, 2019, 58(17): 4687-4694. doi:  10.1364/AO.58.004687
    [11] Zhang Su, Zhan Juntong, Fu Qiang, et al. Effects of environment variation of glycerol smoke particles on the persistence of linear and circular polarization [J]. Optics Express, 2020, 28(14): 20236-20248. doi:  10.1364/OE.395428
    [12] Driggers Ronald G, Hodgkin Van, Vollmerhausen Richard. What good is SWIR? Passive day comparison of VIS, NIR, and SWIR[C]//Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIV, 2013, 8706: 87060L.
    [13] Van der Laan J D, Redman B J, Jacob W S, et al. Testing active polarimetric imagers in fog (Conference Presentation)[C]//SPIE Defense + Commercial Sensing, 2019, 11019: 1101909.
    [14] Patnaik Pradyot. Handbook of Inorganic Chemicals[M]. New York: McGraw-Hill, 2003.
    [15] Chu Jinkui, Kang Weidong, Zeng Xiangwei, et al. Near-infrared bilayer nanowire grid polarizer array fabricated using soft nanoimprint lithography [J]. Optical Engineering, 2019, 58(5): 057101. doi:  10.1117/1.OE.58.5.057101
    [16] Zeng Xiangwei, Chu Jinkui, Wu Qingming, et al. Polarization state persistence characteristics in wet haze within PM2.5 for forward transmission[C]//2019 International Conference on Optical Instruments and Technology: Optical Communication and Optical Signal Processing, 2020, 11435: 1143509.
    [17] Chu Jinkui, Wu Qingming, Zeng Xiangwei, et al. Forward transmission characteristics in polystyrene solution with different concentrations by use of circularly and linearly polarized light [J]. Applied Optics, 2019, 58(25): 6750-6754. doi:  10.1364/AO.58.006750
  • [1] 文鑫皓, 贾瑀, 于乐泳, 邵丽, 陈惠, 霞朝杰, 汤林龙, 史浩飞.  硅基热电子短波红外探测技术(封面文章·特邀) . 红外与激光工程, 2024, 53(4): 20240116-1-20240116-22. doi: 10.3788/IRLA20240116
    [2] 廖英琦, 杨苏辉, 宋健, 郝燕, 徐震.  利用涡旋光场计算水中前向散射的频率响应 . 红外与激光工程, 2023, 52(9): 20220831-1-20220831-10. doi: 10.3788/IRLA20220831
    [3] 汪鸿祎, 陶文刚, 陆逸凡, 张永刚, 黄松垒, 方家熊.  基于可编程开窗IP核的低功耗读出电路研究 . 红外与激光工程, 2023, 52(12): 20230241-1-20230241-9. doi: 10.3788/IRLA20230241
    [4] 张前程, 钟胜, 吕劲松, 李显成.  大视场全天时星敏感器光学系统设计 . 红外与激光工程, 2023, 52(3): 20220583-1-20220583-9. doi: 10.3788/IRLA20220583
    [5] 刘永征, 杜剑, 安秦宇宁, 杨凡超, 张昕, 李洪波.  星载遥感短波红外高速高光谱成像仪坏像元识别 . 红外与激光工程, 2023, 52(2): 20220308-1-20220308-10. doi: 10.3788/IRLA20220308
    [6] 史衍丽, 李云雪, 白容, 刘辰, 叶海峰, 黄润宇, 侯泽鹏, 马旭, 赵伟林, 张家鑫, 王伟, 付全.  短波红外单光子探测器的发展(特邀) . 红外与激光工程, 2023, 52(3): 20220908-1-20220908-16. doi: 10.3788/IRLA20220908
    [7] 张刘, 李博楠, 卢勇男, 邹阳阳, 王泰雷.  基于Offner凸面光栅星载CO2成像光谱仪光学系统设计 . 红外与激光工程, 2022, 51(7): 20220431-1-20220431-9. doi: 10.3788/IRLA20220431
    [8] 于春蕾, 龚海梅, 李雪, 黄松垒, 杨波, 朱宪亮, 邵秀梅, 李淘, 顾溢.  2560×2048元短波红外InGaAs焦平面探测器(特邀) . 红外与激光工程, 2022, 51(3): 20210941-1-20210941-10. doi: 10.3788/IRLA20210941
    [9] 马旭, 李云雪, 黄润宇, 叶海峰, 侯泽鹏, 史衍丽.  短波红外探测器的发展与应用(特邀) . 红外与激光工程, 2022, 51(1): 20210897-1-20210897-12. doi: 10.3788/IRLA20210897
    [10] 曾祥伟, 李亚红, 褚金奎, 张燕.  限定接收范围的散射偏振前向传输优化算法 . 红外与激光工程, 2021, 50(12): 20210158-1-20210158-6. doi: 10.3788/IRLA20210158
    [11] 李雪, 邵秀梅, 李淘, 程吉凤, 黄张成, 黄松垒, 杨波, 顾溢, 马英杰, 龚海梅, 方家熊.  短波红外InGaAs焦平面探测器研究进展 . 红外与激光工程, 2020, 49(1): 0103006-0103006(8). doi: 10.3788/IRLA202049.0103006
    [12] 李国元, 么嘉棋, 赵一鸣, 李正强, 李旭, 唐洪钊.  激光测高卫星大气散射延迟改正现状及展望 . 红外与激光工程, 2020, 49(11): 20200234-1-20200234-11. doi: 10.3788/IRLA20200234
    [13] 郭忠义, 汪信洋, 李德奎, 王鹏飞, 张宁, 胡天伟, 张曼, 高隽.  偏振信息传输理论及应用进展(特约) . 红外与激光工程, 2020, 49(6): 20201013-1-20201013-19. doi: 10.3788/IRLA20201013
    [14] 单良, 徐良, 洪波, 曹丽霞, 王道档, 郭天太, 孔明.  小角前向散射偏振比法颗粒粒度分布反演 . 红外与激光工程, 2019, 48(1): 117001-0117001(8). doi: 10.3788/IRLA201948.0117001
    [15] 张家民, 时东锋, 黄见, 吕申龙, 王英俭.  前向调制散斑偏振关联成像技术研究 . 红外与激光工程, 2018, 47(10): 1041001-1041001(7). doi: 10.3788/IRLA201847.1041001
    [16] 于磊, 陈素娟, 陈结祥, 薛辉.  精准农业观测高数值孔径短波红外成像光谱仪光学系统 . 红外与激光工程, 2018, 47(12): 1218007-1218007(7). doi: 10.3788/IRLA201847.1218007
    [17] 张学海, 魏合理.  基于用几何光学和米散射法的球形粒子前向散射特性计算研究 . 红外与激光工程, 2015, 44(5): 1485-1490.
    [18] 胡亚东, 胡巧云, 孙斌, 王羿, 洪津.  暗电流对短波红外偏振测量精度的影响 . 红外与激光工程, 2015, 44(8): 2375-2381.
    [19] 李浩, 陈晓颖, 单陈华, 唐丽萍.  雾和气溶胶的光学特性对前向散射和总散射能见度仪性能的影响 . 红外与激光工程, 2013, 42(6): 1568-1574.
    [20] 陈振跃, 王霞, 张明阳, 金伟其.  三波段大气传输红外偏振特性对比分析 . 红外与激光工程, 2013, 42(9): 2299-2304.
  • 加载中
图(6)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  70
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-25
  • 刊出日期:  2022-04-07

烟雾环境中532 nm/1550 nm线偏振光前向传输实验研究

doi: 10.3788/IRLA20210157
    作者简介:

    曾祥伟,男,讲师,博士,主要从事偏振传输、微纳光学器件方面的研究

基金项目:  国家自然科学基金(62105136,11904044)
  • 中图分类号: O439

摘要: 针对烟雾环境中偏振前向传输在短波红外波段是否具有偏振信号增强的问题,实验研究了烟雾环境中水平线偏振光在532 nm和1 550 nm波长下的前向传输偏振特性。烟雾环境由烟饼燃烧所制,其主要由悬浮氯化铵颗粒和水汽组成,且氯化铵颗粒在烟饼点燃7~16 min内稳定沉积。搭建了532 nm和1 550 nm两套单波长激光前向传输测试平台,用以测量水平线偏振光在烟雾环境中的前向传输偏振特性。分析测量误差主要由激光源的光强波动误差、测量时间变化误差、偏振器件的安装误差和转角误差引起,计算了532 nm和1 550 nm激光前向传输测试平台的测量误差峰值分别约为1.03%和0.89%。测试烟饼燃烧7~16 min时的偏振状态保持率RoPS,测试结果表明:相比532 nm波长,水平线偏振光在1 550 nm波长前向传输后具有更优异的偏振状态保持特性,且随着烟雾浓度降低,两者之间的偏振状态保持差异逐渐缩小。文中研究通过实验验证了所制烟雾环境中水平线偏振光在1 550 nm波长前向传输后具有优异的偏振信号,这可为短波红外偏振技术的实际应用提供一定的实验支撑。

English Abstract

    • 烟雾影响着救援、侦察和交通等,由于烟雾对光的吸收和散射作用,光信号在传输过程中严重衰减,这直接影响光电检测系统的正常运行。近年来,偏振传输研究发展迅速[1-4],偏振技术已成为散射环境中传输信号增强和作用距离增加的一种有效方法[5-6]。因此,一些学者研究了烟雾环境中的偏振传输特性[7],其中,部分学者开展了烟雾环境中偏振传输的实验研究。

      Chenault[8]采用632 nm激光传输系统测试偏振与强度成像差异,测试结果表明:相比可见光强度图像,偏振图像显著提高了图像对比度。谢梅林[9]研究了烟尘环境中的532 nm激光偏振成像,实验结果表明:相比强度图像,基于模糊自适应算法的偏振图像融合技术能够有效提高图像对比度。张素[10]测试了圆、线偏振光在烟雾中的传输特性,实验波长分别为450 nm、532 nm和670 nm,测试结果表明:在532 nm和670 nm波长,圆偏振光比线偏振光穿透烟雾后具有更高的偏振度。张素[11]还研究了环境变化对甘油烟雾环境中圆、线偏振光传输特性的影响,仿真与532 nm激光测试结果均表明:圆、线偏振光的偏振度随着光学厚度的增加而不断减小,但在相同的光学厚度下,圆、线偏振光的偏振度都随相对湿度的增加而增加;当光学厚度较大且湿度环境较高时,圆偏振光比线偏振光前向传输后具有更高的偏振度。

      目前,烟雾环境中偏振传输特性的实验研究集中于可见光波段,而短波红外(0.9~1.7 μm)具有一定的穿透烟雾能力,这在烟雾环境中已有所应用[12],因此,烟雾环境中短波红外偏振传输具有偏振信号增强、作用距离增加的潜力。其中,532 nm和1550 nm波长不但是优异的大气窗口,而且具有常用的器件配置,易于搭建验证系统和开展验证实验,并且在救援、侦察和交通等领域已有一定的应用基础,为此,文中选用532 nm和1550 nm波长开展偏振传输实验研究。目前,John等[13]开展了水雾环境中的验证实验,实验波长为532 nm和1550 nm,实验结果表明:与532 nm波长相比,偏振光在1550 nm波长传输后具有更好的图像对比度。然而,针对烟雾环境中532 nm和1550 nm波长的偏振传输实验仍然未见报道。为了验证烟雾环境中短波红外偏振传输具有偏振信号增强、作用距离增加的猜想,文中搭建了532 nm和1550 nm两套单波长激光偏振传输测试平台,测量水平线偏振光在烟雾环境中的前向传输偏振特性。

    • 采用烟饼燃烧制造烟雾环境,烟饼参照图1,其成分主要为70%的氯化铵、15%的松香和15%的面粉。

      图  1  烟饼

      Figure 1.  Tobacco pad

      点燃烟饼,烟饼中的松香作为助燃剂辅助面粉燃烧,产生水蒸汽和二氧化碳气体,其化学反应式为:

      $$ {\left({\rm{C}}_{\rm{6}}{\rm{H}}_{\rm{10}}{\rm{O}}_{\rm{5}}\right)}_{n}+6n{\rm{O}}_{\rm{2}}\stackrel{{\text{点燃}}}{\to }{\rm{6}}n{\rm{CO}}_{\rm{2}}\uparrow +5n{\rm{H}}_{\rm{2}}\rm{O}\uparrow $$ (1)

      面粉燃烧产生大量热量,导致烟饼中的氯化铵受热分解为氨气和氯化氢气体,其化学反应式为:

      $${\rm{N}}{{\rm{H}}_4}{\rm{Cl}}\xrightarrow{{\rm{\Delta }}}{\rm{N}}{{\rm{H}}_3} \uparrow + {\rm{HCl}} \uparrow $$ (2)

      氨气与氯化氢气体相遇,产生氯化铵小颗粒,生成大量白烟,其化学反应式为:

      $${\rm{N}}{{\rm{H}}_3} \uparrow + {\rm{HCl}} \uparrow \to {\rm{N}}{{\rm{H}}_4}{\rm{Cl}}$$ (3)

      松香和面粉在燃烧过程中产生一部分水汽,氯化铵本易溶于水,但氨气和氯化氢遇冷生成的氯化铵颗粒理化性质发生改变,致使氯化铵颗粒不溶于水。因此,烟饼燃烧后主要成分为氯化铵颗粒,附加部分水汽。重新生成的氯化铵颗粒理化性质稳定,其密度为1.527 g/cm3,峰值粒径约为0.62 μm[14]

      烟雾环境如图2所示,烟饼在密封烟室中充分燃烧,烟室由亚克力板材制作,它在可见光波段的透光率高于90%,在短波红外波段的透光率高于85%。烟室长宽高分别为240 mm、160 mm和160 mm。由于重新生成的氯化铵颗粒密度较大,它在烟室中逐渐沉降,导致烟雾浓度随着时间推移逐渐下降。经观察发现,1.68 g烟饼完全燃烧后约18 min烟室呈现透明,氯化铵颗粒基本沉积完毕。

      图  2  烟饼燃烧生成的烟雾环境

      Figure 2.  Smoke environment generated by tobacco pad burning

      为比较短波红外与可见光波段的偏振传输差异,分别搭建了532 nm和1550 nm两组单波长激光前向传输测试平台,用以测量水平线偏振光在烟雾环境中的前向传输偏振特性,其中,532 nm和1550 nm测试平台均采用1.68 g烟饼燃烧生成的烟雾环境。

      测试平台示意图参照图3所示。激光源发射激光,经过偏振器P1后生成水平线偏振光Sin,水平线偏振光Sin通过充满烟雾的烟室,输出为Sout,最后,光波经过偏振器P2后转化为Smea被探测器接收。

      图  3  测试平台示意图

      Figure 3.  Schematic diagram of testing device

      参照示意图3分别搭建了532 nm和1550 nm的激光前向传输测试平台。532 nm激光前向传输测试平台参照图4,其中,激光器为LSR型半导体激光器,偏振片P1和P2均为Edmund型偏振片,探测器为AvanSpec-ULS2048LTEC型光谱仪。1550 nm激光前向传输测试平台参照图5,其中,激光器为DFB激光器,偏振片P1和P2均为自主研发的短波红外金属光栅[15],探测器为铟镓砷PIN光电二极管。

      图  4  532 nm线偏振光前向传输测试装置

      Figure 4.  Experimental setup for 532 nm linearly polarized light for forward transmission

      图  5  1550 nm线偏振光前向传输测试装置

      Figure 5.  Experimental setup for 1550 nm linearly polarized light for forward transmission

    • 偏振状态保持率(Retention rate of polarization state, RoPS)[16-17]表征前向散射光中与初始入射光具有相同偏振态的光波光强占前向散射光总光强的比例,它不仅规避了Stokes分量中正交分量光强度差值所引入的计算误差,而且规避了偏振度计算过程中其他偏振态光强的影响,因此,文中采用RoPS作为评估指标。

      由于实验选用水平线偏振光前向传输,此时,RoPS表达为:

      $$RoP{S_\parallel } = \frac{{{P_\parallel }}}{{{P_{\rm{0}}}}} = \frac{{{P_\parallel }}}{{{P_\parallel } + {P_ \bot }}}$$ (4)

      式中:P0表示前向散射光的总光强度;${P_\parallel } $代表前向散射光中水平线偏振光的光强度;P代表前向散射光中垂直线偏振光的光强度。

      测量同一时刻下水平和垂直分量的光强值,即可求解$RoP{S_\parallel } $。由于采用的分时测量装置难以同一时刻测量两点,为尽量降低时间变化对测量结果的影响,在偏振片上标记出垂直和水平位置,实现两个角度之间的快速变换,实验中能够确保单次测量水平和垂直分量光强值的时间差控制在1 s左右。

      实验中烟雾的浓度随时间推移而逐渐降低,这导致测试环境不稳定,若测量特定环境下的数据,实验操作难度较大,而观察数据随时间的变化关系则较为容易。但由于烟雾沉降会对实验结果造成影响,需先研究烟饼燃烧后烟雾颗粒沉积特性,经过大量1.68 g烟饼燃烧重复实验,观察出烟饼点燃后7~16 min内烟雾稳定沉积,该时段开展测试较为可靠,因此,两组实验均在1.68 g烟饼点燃后7~16 min内开展测试。测试过程中每隔一分钟记录一组水平和垂直分量的光强值,共记录10组数据,为避免单次测量的不稳定性,同一时刻每组数据测量10次取平均值。此外,实验中保持其他条件一致,确保两套测试平台的烟室中氯化铵颗粒沉降速率相似,即确保两套测试平台在相同消散时间具有相似的环境参数。

    • 测量误差主要包括激光源的光强波动误差、测量时间变化误差、偏振器件的安装误差和转角误差,其中,偏振器件的安装与转角误差为系统误差,激光光源的波动误差和测量时间变化误差为随机误差。

      (1) 系统误差A的误差分析。烟室设置为空气环境,水平线偏振光透过烟室。测得532 nm测试平台的$RoP{S_\parallel } $为0.9921,其系统误差A约为0.79%;测得1550 nm测试平台的$RoP{S_\parallel } $为0.9938,其系统误差A约为0.62%。两套传输系统的系统误差A均小于1%,系统误差能够满足测试精度所需。

      (2) 激光光源波动误差B的误差分析。测量时发现激光源光强随机波动误差B趋于正态分布规律,为此,对光源的输出光强进行了30 min的连续采集作为样本,计算样本的偏度系数和峰度系数,以判断激光光源波动误差B的分布规律。偏度系数为:

      $$SK = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^3}} /{\sigma ^3}$$ (5)

      式中:SK表示偏度系数;σ表示样本的标准差。

      峰度系数为:

      $$K = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^4}} /{\sigma ^4} - 3$$ (6)

      求得532 nm测试平台的偏度系数为0.021,峰度系数为−0.014,求得1550 nm测试平台的偏度系数为0.023,峰度系数为−0.016。两套测试平台的偏度系数与峰度系数都接近0,因此,设定激光源光强随机波动误差B近似服从正态分布规律。根据3σ原则可知,随机误差在[−3σ,3σ]在以外的取值概率小于0.3%,设定激光源光强随机波动误差B与标准差之间满足

      $$B \approx {\rm{3}}\sigma $$ (7)

      测得532 nm激光源光强随机波动标准差σ为0.0011,532 nm激光源光强随机波动误差B为0.33%;测得1550 nm激光源光强随机波动标准差σ为0.0014,1550 nm激光源光强随机波动误差B为0.42%。

      (3) 测量时间变化误差C的误差分析。烟饼点燃后7~16 min内统计10组数据,每组间隔为60 s,而每次水平和垂直分量光强值的测量时间间隔能够控制在1 s,两次光强之间的测量相隔时差较短。对于532 nm测试平台,通过多次测量发现水平分量的10组数据光强值差值在9~11 min处于峰段,且该峰段近似为单调直线递减函数;对于1550 nm测试平台,多次测量后的峰值波段、沉积趋势与532 nm测试平台的相同。计算测量时间变化误差C峰值为:

      $$C = \frac{{{I_{11}} - {I_9}}}{{120{I_0}}}\times 100{\text{%}} $$ (8)

      式中:I0为烟室为空气时的光强值;I9为烟饼燃烧9 min的光强值;I11为烟饼燃烧11 min的归一化光强值。

      计算10次重复实验的测量数据,求得532 nm测试平台的测量时间变化误差C峰值范围为0.13%~0.14%,求得1550 nm测试平台的测量时间变化误差C峰值范围为0.11%~0.12%。

      采用算数合成法求解随机误差,构建$RoP{S_\parallel } $计算函数:

      $$\begin{gathered} RoP{S_\parallel } = \frac{{{P_\parallel }}}{{{P_{\rm{0}}}}} = \frac{{{P_\parallel }}}{{{P_\parallel } + {P_ \bot }}} = f({P_\parallel },{P_ \bot }) \\ {P_\parallel }{\rm{ = }}\overline {{P_\parallel }} \pm B \pm C \in [\overline {{P_\parallel }} - B - C,\overline {{P_\parallel }} + B + C] \\ {P_ \bot }{\rm{ = }}\overline {{P_ \bot }} \pm B \pm C \in [\overline {{P_ \bot }} - B - C,\overline {{P_ \bot }} + B + C] \end{gathered} $$ (9)

      求得$RoP{S_\parallel } $的随机误差为:

      $$ \begin{split} \left| {\Delta RoP{S_\parallel }} \right| =& \left| {\frac{{\partial RoP{S_\parallel }}}{{\partial {P_\parallel }}} \cdot \Delta {P_\parallel }} \right|{\rm{ + }}\left| {\frac{{\partial RoP{S_\parallel }}}{{\partial {P_ \bot }}} \cdot \Delta {P_ \bot }} \right| = \\ &\frac{{{P_\parallel }{P_ \bot }}}{{{{\left( {{P_\parallel }{\rm{ + }}{P_ \bot }} \right)}^{\rm{2}}}}}\left| {\delta {P_\parallel }} \right|{\rm{ + }}\frac{{{P_\parallel }{P_ \bot }}}{{{{\left( {{P_\parallel }{\rm{ + }}{P_ \bot }} \right)}^{\rm{2}}}}}\left| {\delta {P_ \bot }} \right| \end{split} $$ (12)

      式中:Δ${P_\parallel } $、ΔP分别表示水平线偏振和垂直线偏振光强的绝对测量误差;δ${P_\parallel } $δP分别表示水平线偏振和垂直线偏振光强的相对测量误差。

      当设定同一系统中水平线偏振光和垂直线偏振光的输出光强平均值一致时,公式(10)简化为:

      $$ \Delta RoP{S}_{\parallel }{\rm=}\frac{\rm{1}}{\rm{4}}\left|\delta {P}_{\parallel }\right|{\rm+}\frac{\rm{1}}{\rm{4}}\left|\delta {P}_{\perp }\right|\leqslant \frac{\rm{1}}{\rm{2}}(B+C)$$ (10)

      综合考虑系统误差A对测量的影响,求得532 nm测试平台的测量误差峰值约为1.03%,求得1550 nm测试平台的测量误差峰值约为0.89%。

    • 测试结果参照图6,烟饼燃烧7~16 min内,烟室中的浓度随时间推移持续减少。图6中红色区域为涵盖测量误差的范围数据,测量误差对实验数据有一定影响,但测量误差未对测试结果趋势造成影响,由于实验目的是研究偏振传输规律,测量误差范围能够满足获取实验规律。

      图  6  烟雾环境中1550 nm与532 nm水平线偏振光前向传输的测试结果

      Figure 6.  Test results of linearly polarized light forward propagation in smog at both 532 nm and 1550 nm wavelengths

      测试结果显示:在相同的烟饼燃烧时间下,水平线偏振光在1550 nm波长前向传输后具有更大的$RoP{S_\parallel } $数值,且在7~9 min燃烧时段内,水平线偏振光在1550 nm波长和532 nm波长的$RoP{S_\parallel } $数值差异明显,随着烟饼燃烧时间推移,烟雾浓度逐渐降低,水平线偏振光在1550 nm波长和532 nm波长的$RoP{S_\parallel } $数值差异逐渐缩小。

      测试结果表明:当水平线偏振光在以氯化铵悬浮颗粒为主的人造烟雾环境中前向传输时,水平线偏振光在1550 nm波长前向传输后具有更优异的偏振状态保持特性,且随着烟雾环境浓度降低,水平线偏振光在1550 nm波长和532 nm波长的偏振状态保持差异逐渐缩小。

      由此判定:相比532 nm波长,水平线偏振光在1550 nm波长前向传输后的偏振信号更强;当烟雾浓度较高时,水平线偏振光在1550 nm波长前向传输后的偏振信号增强更明显;当烟雾浓度逐渐降低时,水平线偏振光在1550 nm波长和532 nm波长前向传输后的偏振信号增强差距逐渐缩小。这与John等[13]开展水雾环境中的验证实验和笔者关于湿霾环境的研究[16]具有相似的结论。

    • 光谱是影响烟雾环境中偏振传输的重要因素。文中通过实验研究了烟雾环境中水平线偏振光在532 nm和1550 nm波长下的前向传输偏振特性。烟雾环境由烟饼燃烧生成,它主要包括悬浮的NH4Cl颗粒和水蒸气,当烟饼燃烧至7~16 min时,NH4Cl颗粒稳定沉积。为测量水平线偏振光的前向传输偏振特性,分别搭建了532 nm和1550 nm波长的激光前向传输测试平台。开展测试之前,对测试平台误差开展了分析,测量误差主要包括激光源的光强波动误差、测量时间变化误差、偏振器件的安装误差和转角误差,经计算,532 nm激光前向传输测试平台的测量误差约为1.03%,1550 nm激光前向传输测试平台的测量误差约为0.89%。测量烟饼燃烧7~16 min时偏振状态保持率RoPS的变化情况,测量结果表明:水平线偏振光在1550 nm波长前向传输后具有更优异的偏振状态保持特性,且随着烟雾环境浓度降低,水平线偏振光在1550 nm波长和532 nm波长的偏振状态保持差异逐渐缩小。文中通过实验验证了水平线性偏振光在1550 nm波长下具有优异的偏振状态保持性,相关结果能够为短波红外偏振技术的应用推广提供一定的实验支撑。

      此外,烟雾环境隶属微粒非规则、微粒非各向同性和介质非均匀的三非环境,开展三非环境建模分析和机理研究是目前国际上研究的难点和瓶颈,相关研究将在今后逐步开展。

参考文献 (17)

目录

    /

    返回文章
    返回