留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于测量折射率的光纤迈克尔逊干涉型传感器

郑晨 冯文林 何思杰 李邦兴

郑晨, 冯文林, 何思杰, 李邦兴. 用于测量折射率的光纤迈克尔逊干涉型传感器[J]. 红外与激光工程, 2022, 51(5): 20210327. doi: 10.3788/IRLA20210327
引用本文: 郑晨, 冯文林, 何思杰, 李邦兴. 用于测量折射率的光纤迈克尔逊干涉型传感器[J]. 红外与激光工程, 2022, 51(5): 20210327. doi: 10.3788/IRLA20210327
Zheng Chen, Feng Wenlin, He Sijie, Li Bangxing. Optical fiber Michelson interference sensor for measuring refractive index[J]. Infrared and Laser Engineering, 2022, 51(5): 20210327. doi: 10.3788/IRLA20210327
Citation: Zheng Chen, Feng Wenlin, He Sijie, Li Bangxing. Optical fiber Michelson interference sensor for measuring refractive index[J]. Infrared and Laser Engineering, 2022, 51(5): 20210327. doi: 10.3788/IRLA20210327

用于测量折射率的光纤迈克尔逊干涉型传感器

doi: 10.3788/IRLA20210327
基金项目: 国家自然科学基金(51574054);重庆市教委重大科技项目(KJZD-M20191102);重庆市创新领军人才项目(CSTCCXLJRC201905);重庆市教委科学技术研究项目(KJQN201801133)
详细信息
    作者简介:

    郑晨,男,硕士生,主要从事光纤传感方面的研究

  • 中图分类号: TN253

Optical fiber Michelson interference sensor for measuring refractive index

Funds: National Natural Science Foundation of China (51574054);Major Science and Technology Project of Chongqing Education Commission(KJZD-M20191102);Chongqing Innovative Leading Talents Program(CSTCCXLJRC201905);Science and Technology Research Project of Chongqing Education Commission(KJQN201801133)
  • 摘要: 提出了一种基于单模光纤-四芯光纤-薄芯光纤(SMF-FCF-TCF)迈克尔逊干涉结构的折射率传感器。采用直接熔接的方式将各光纤进行熔接,由于各光纤之间纤芯的直径不匹配,因此在光纤的熔接处会发生光的激发和耦合。薄芯光纤端面涂覆有一层银面反射膜并用紫外固化胶进行保护来增强光在端面的反射率。四芯光纤作为传感结构中的耦合器,激发了更多的光进入薄芯光纤的包层中,提升了传感器的灵敏度。对传感器的折射率和温度传感特性分别进行了实验探究,实验结果表明,在折射率1.3333~1.3794范围内的灵敏度为137.317 nm/RIU,线性度为0.999,并且温度对传感器的影响较小。该传感结构熔接方式简单,在折射率测量领域具有一定的应用前景。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental device

    图  2  不同长度传感器干涉谱图

    Figure  2.  Interference spectra of sensors with different lengths

    图  3  传感结构FFT频谱示意图

    Figure  3.  Schematic diagram of the FFT spectrum of the sensing structure

    图  4  传感器在水中稳定性

    Figure  4.  Stability of the sensor in water

    图  5  (a) 传感器折射率光谱漂移图;(b) 折射率线性度

    Figure  5.  (a) Spectral shift diagram of refractive index of sensor; (b) Refractive-index linearity

    图  6  温度灵敏度

    Figure  6.  Temperature sensitivity

  • [1] Pei Li, Wang Jianshuai, Zheng Jingjing, et al. Research on specialty and application of space-division-multiplexing fiber [J]. Infrared and Laser Engineering, 2018, 47(10): 1002001. (in Chinese) doi:  10.3788/IRLA201847.1002001
    [2] John Love. Simple qualitative explanations for light guidance in index-guiding fibres, holey fibres, photonic band-gap fibres and nanowires [J]. Chinese Optics, 2014, 7(3): 499-508. (in Chinese)
    [3] Chen Yuzhi, Li Xuejin. Single mode-no core-single mode fiber based surface plasmon resonance sensor (invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201055. (in Chinese) doi:  10.3788/IRLA20201055
    [4] Su Yudong, Wei Yong, Wu Ping, et al. Step-index multimode fiber cladding surface plasma resonance sensor [J]. Optics and Precision Engineering, 2019, 27(12): 2525-2533. (in Chinese) doi:  10.3788/OPE.20192712.2525
    [5] Zhao Mingfu, Wang Nian, Luo Bingbing, et al. Simultaneous measurement of temperature and concentration of sugar solution based on hybrid fiber grating sensor [J]. Chinese Optics, 2014, 7(3): 476-482. (in Chinese)
    [6] Fu Haiwei, Yan Xu, Shao Min, et al. Optical fiber core-mismatched Mach-Zehnder refractive sensor [J]. Optics and Precision Engineering, 2014, 22(9): 2285-2291. (in Chinese) doi:  10.3788/OPE.20142209.2285
    [7] Yang Y, Wang Y, Jiang J, et al. High-sensitive all-fiber Fabry-Perot interferometer gas refractive index sensor based on lateral offset splicing and vernier effect [J]. Optik, 2019, 196: 163181. doi:  10.1016/j.ijleo.2019.163181
    [8] Shao M, Han L, Sun H, et al. A liquid refractive index sensor based on 3-core fiber Michelson interferometer [J]. Optics Communications, 2019, 453: 124356. doi:  10.1016/j.optcom.2019.124356
    [9] Fan Y, Zhu T, Shi L, et al. Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation [J]. Applied Optics, 2011, 50(23): 4604-4610. doi:  10.1364/AO.50.004604
    [10] Yin G, Lou S, Zou H. Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section [J]. Optics & Laser Technology, 2013, 45: 294-300.
    [11] Zhang N, Xu W, You S, et al. Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF [J]. Optics Communications, 2018, 410: 70-74. doi:  10.1016/j.optcom.2017.09.096
    [12] Wong W C, Chan C C, Chen L H, et al. Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation [J]. Optics Letters, 2011, 36(9): 1731-1733. doi:  10.1364/OL.36.001731
    [13] Chen C, Yang R, Zhang X, et al. Compact refractive index sensor based on an S-tapered fiber probe [J]. Optical Materials Express, 2018, 8(4): 919-925. doi:  10.1364/OME.8.000919
    [14] Rong Q, Qiao X, Du Y, et al. In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror [J]. Optics and Lasers in Engineering, 2014, 57: 53-57. doi:  10.1016/j.optlaseng.2013.12.010
    [15] Li Z, Wang Y, Liao C, et al. Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer [J]. Sensors and Actuators B: Chemical, 2014, 199: 31-35. doi:  10.1016/j.snb.2014.03.071
    [16] Li L, Xia L, Xie Z, et al. All-fiber Mach-Zehnder interferometers for sensing applications [J]. Optics Express, 2012, 20(10): 11109-11120. doi:  10.1364/OE.20.011109
  • [1] 沙金巧, 杨俊义, 范君柳, 王军.  迈克尔逊干涉仪在相位相干成像测量系统中的应用 . 红外与激光工程, 2022, 51(11): 20220396-1-20220396-8. doi: 10.3788/IRLA20220396
    [2] 王浩然, 董明利, 孙广开, 何彦霖, 周康鹏.  遥感卫星结构在轨热应变光纤光栅监测方法 . 红外与激光工程, 2022, 51(12): 20220202-1-20220202-14. doi: 10.3788/IRLA20220202
    [3] 秦根朝, 孟凡勇, 李红, 庄炜, 董明利.  光纤光栅链路反射谱强度自适应解调 . 红外与激光工程, 2022, 51(5): 20200440-1-20200440-8. doi: 10.3788/IRLA20200440
    [4] 范珍珍.  面向敏感环境的反射式光纤传感防盗系统设计 . 红外与激光工程, 2022, 51(10): 20220068-1-20220068-6. doi: 10.3788/IRLA20220068
    [5] 管立伟, 卢宇, 何志杰, 陈曦.  基于光纤传感的智能安防报警系统设计与开发 . 红外与激光工程, 2022, 51(8): 20220028-1-20220028-6. doi: 10.3788/IRLA20220028
    [6] 李东亮, 卢贝.  基于深度神经网络的光纤传感识别算法 . 红外与激光工程, 2022, 51(9): 20210971-1-20210971-6. doi: 10.3788/IRLA20210971
    [7] 肖菊, 段鹏飞.  面向楼宇结构健康的光纤传感网络监测系统研究 . 红外与激光工程, 2021, 50(8): 20210263-1-20210263-7. doi: 10.3788/IRLA20210263
    [8] 祝航威, 何彦霖, 孙广开, 宋言明, 祝连庆.  螺旋型光纤传感软体操作臂状态测量及特性分析 . 红外与激光工程, 2020, 49(11): 20200276-1-20200276-9. doi: 10.3788/IRLA20200276
    [9] 刘敏, 冯文林, 黄国家, 冯德玖.  二氧化钛包覆无芯光纤的硫化氢气体传感器性能研究 . 红外与激光工程, 2019, 48(8): 818003-0818003(5). doi: 10.3788/IRLA201948.0818003
    [10] 何祖源, 刘银萍, 马麟, 杨晨, 童维军.  小芯径多模光纤拉曼分布式温度传感器 . 红外与激光工程, 2019, 48(4): 422002-0422002(7). doi: 10.3788/IRLA201948.0422002
    [11] 刘楚, 钟凯, 史杰, 靳硕, 葛萌, 李吉宁, 徐德刚, 姚建铨.  迈克尔逊干涉法精确测量太赫兹频谱及目标速度 . 红外与激光工程, 2018, 47(11): 1117006-1117006(7). doi: 10.3788/IRLA201847.1117006
    [12] 裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶.  空分复用光纤的特性及其应用研究 . 红外与激光工程, 2018, 47(10): 1002001-1002001(12). doi: 10.3788/IRLA201847.1002001
    [13] 李志辰, 刘琨, 江俊峰, 马鹏飞, 李鹏程, 刘铁根.  光纤周界安防系统的高准确度事件识别方法 . 红外与激光工程, 2018, 47(9): 922002-0922002(6). doi: 10.3788/IRLA201847.0922002
    [14] 秦齐, 刘艳, 刘欢欢, 时川, 谭中伟.  图像处理在光纤光斑微位移传感中的应用 . 红外与激光工程, 2018, 47(10): 1022004-1022004(7). doi: 10.3788/IRLA201847.1022004
    [15] 赵林, 王纪强, 李振.  光纤负压波管道泄漏监测系统 . 红外与激光工程, 2017, 46(7): 722002-0722002(6). doi: 10.3788/IRLA201746.0722002
    [16] 李勤, 王洪波, 李立京, 梁生, 钟翔.  基于Michelson 干涉仪的光纤分布式扰动传感器 . 红外与激光工程, 2015, 44(1): 205-209.
    [17] 李强, 王智, 黄泽铗, 郭凯丽, 刘岚岚.  基于SCBSS信号处理技术的SMS多参量光纤传感系统 . 红外与激光工程, 2014, 43(10): 3383-3387.
    [18] 李强, 黄泽铗, 徐雅芹, 张凌云, 史骥, 王智.  基于单模-多模-单模光纤模间干涉的传感系统 . 红外与激光工程, 2014, 43(5): 1630-1636.
    [19] 王倩, 宋兴亮, 刘广义, 范元媛, 崔惠绒, 鲍洋, 周翊.  基于迈克尔逊腔光纤激光相干合成的输出特性 . 红外与激光工程, 2013, 42(1): 73-78.
    [20] 徐鹏飞, 张建辉, 孟祥然, 马可贞, 赵宇, 张文栋, 薛晨阳, 闫树斌.  光纤腔动态谐振响应特性 . 红外与激光工程, 2013, 42(3): 599-604.
  • 加载中
图(6)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  54
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-01-25
  • 刊出日期:  2022-06-08

用于测量折射率的光纤迈克尔逊干涉型传感器

doi: 10.3788/IRLA20210327
    作者简介:

    郑晨,男,硕士生,主要从事光纤传感方面的研究

基金项目:  国家自然科学基金(51574054);重庆市教委重大科技项目(KJZD-M20191102);重庆市创新领军人才项目(CSTCCXLJRC201905);重庆市教委科学技术研究项目(KJQN201801133)
  • 中图分类号: TN253

摘要: 提出了一种基于单模光纤-四芯光纤-薄芯光纤(SMF-FCF-TCF)迈克尔逊干涉结构的折射率传感器。采用直接熔接的方式将各光纤进行熔接,由于各光纤之间纤芯的直径不匹配,因此在光纤的熔接处会发生光的激发和耦合。薄芯光纤端面涂覆有一层银面反射膜并用紫外固化胶进行保护来增强光在端面的反射率。四芯光纤作为传感结构中的耦合器,激发了更多的光进入薄芯光纤的包层中,提升了传感器的灵敏度。对传感器的折射率和温度传感特性分别进行了实验探究,实验结果表明,在折射率1.3333~1.3794范围内的灵敏度为137.317 nm/RIU,线性度为0.999,并且温度对传感器的影响较小。该传感结构熔接方式简单,在折射率测量领域具有一定的应用前景。

English Abstract

    • 光纤传感器由于其体积小、灵敏度高、抗电磁干扰能力强等优点引起了研究人员的广泛关注[1],且其在折射率测量领域已经成为学者们近年来研究的热点[2-4]。根据测量环境的差异和对性能要求的不同,各种结构的光纤折射率传感器已被开发。例如利用光纤布拉格光栅[5]、马赫-曾德尔干涉结构[6]、法布里珀罗干涉结构[7]、迈克尔逊干涉结构[8]等实现对折射率的测量。Fan等人将两个具有旋转折射率调制的特殊长周期光纤光栅进行级联制备了一种光纤折射率传感器[9]。该传感器熔接方式十分简单,但是其折射率灵敏度不是很高,只达到了58.8 nm/RIU。Yin等人通过将单模突变锥和另一单模光纤进行错位熔接制备了一种基于不对称光纤马赫-曾德尔干涉仪(AFMZI)的折射率传感器[10]。该结构使用的单模突变锥和错位熔接能够激发更多的包层模式,提高灵敏度。然而使用单模突变细锥和进行错位熔接的方式会使传感器容易断裂,不具备很好的机械性能,并且该结构对折射率灵敏度的提升不是十分的明显。Zhang等人通过在一根单模光纤中的两个相邻的粗锥之间拉制了一个细锥制备了一种基于微型模态干涉仪的多参量传感器[11]。该结构能够同时测量折射率、应变和温度,对折射率的灵敏度为131.93 nm/RIU。该传感器仅仅使用了单模光纤,减少了制作成本,但是其进行多次拉锥的方式会降低其传感结构的重复性,并且也会大大降低了传感器的机械性能,限制了其应用范围。Wong等人提出了一种基于圆形尖端感应模式激励的迈克尔逊微型折射率传感器,对折射率的灵敏度为262.28 nm/RIU[12]。该传感器使用光子晶体光纤提升了折射率的灵敏度,但是增加了其制造成本。Chen等人制作了一种基于S锥形光纤探针并且在端面涂覆有银镜的折射率传感器,其灵敏度为268.8 nm/RIU[13]。该传感器灵敏度较高,结构更为紧凑,但是其制造过程较为繁琐,需要将单模光纤利用熔接机制备成S锥形光纤,增加了制备过程的操作难度,降低了可重复性。

      文中构建一种基于单模光纤-四芯光纤-薄芯光纤(SMF-FCF-TCF)反射结构的迈克尔逊光纤传感器,利用各光纤纤芯直径的不匹配,将四芯光纤作为耦合器并产生干涉。分别对该传感器的折射率灵敏特性和温度灵敏特性进行了实验探究。

    • 传感器如实验装置如图1所示。传感器由SMF、FCF和TCF组成。首先将各类使用的光纤去除涂覆层,四芯光纤长度选择为0.5 cm,薄芯光纤选择合适的长度再用切割刀将需要连接部分的端面切平,最后使用熔接机(S178C, Furukawa Electric, Japan)将各部分用熔接机自带的熔接程序进行熔接。由于一般光纤的端面反射率只有4%,因此利用敏化镀银的化学方法在薄芯光纤末端镀了一层银膜作为反射镜增强传播光的反射率。再在银膜外涂一层紫外胶并用紫外灯照射20 min使紫外胶凝固,紫外胶对端面涂覆的银膜起保护作用。

      图  1  实验装置示意图

      Figure 1.  Schematic diagram of experimental device

      传感结构所用SMF的包层直径为125 μm,纤芯直径为9 μm。FCF的三个边缘纤芯呈正三角形分布,还有一个中间纤芯。FCF的包层直径为125 μm,四个纤芯的直径都为7.6 μm。薄芯光纤的包层直径为125 μm,纤芯直径为2.5 μm。由于各光纤的纤芯直径不匹配,传播的光在光纤熔接处会产生激发耦合现象。首先光源发出的光从SMF传播到FCF中,在经过SMF熔接处时会被激发为FCF的包层模式和纤芯模式,再从FCF中激发为TCF的纤芯模式和包层模式,在TCF中传播后被端面银膜反射回最后耦合进SMF中。

      在该结构中,四芯光纤充当耦合器。当光从SMF传入FCF时,光被激发为FCF的纤芯模式和包层模式,传输到TCF时被二次激发为TCF的包层模式和纤芯模式。最后由端面的银膜反射,经FCF耦合进SMF中,输出到光谱仪中。因此TCF的长度、各光纤之间的熔接方式和光纤端面的处理方法会影响传感器的灵敏度。

      由于包层模与纤芯模的干涉形成干涉图谱,其强度可表示为[14]

      $$I = {I_{{{core}}}} + \sum {I_{clad}^m + \sum\limits_m {2\sqrt {{I_{core}}I_{clad}^m} } } \cos {\varPhi ^m}$$ (1)

      式中:Icore$I_{clad}^m$分别为四个纤芯中纤芯模式的总光强和第m包层模式的光强;Φm为纤芯和第m包层模式的相位差。相位差与TCF的长度以及纤芯模式和第m包层模式之间的有效折射率差成正比,可表示为[15]

      $${\varPhi ^{{m}}} = \frac{{4\pi \left( {n_{eff}^{core} - n_{eff}^{clad,m}} \right)L}}{\lambda } = \frac{{4\pi \Delta n_{eff}^mL}}{\lambda }$$ (2)

      式中:$n_{eff}^{core}$为核心模的有效折射率;$n_{eff}^{clad,m}$为第m包层模的有效折射率;$\Delta n_{eff}^m$为纤芯模式与第m包层模式之间的有效折射率差;L为TCF的长度;λ为传播光的波长。干涉波谷的波长λn可表示为:

      $${\lambda _n} = \frac{{4\Delta {n_{eff}}L}}{{2n + 1}}$$ (3)

      干涉波谷的波长漂移Δλn可表示为[16]

      $$\Delta {\lambda _n} = \frac{{4(\Delta {n_{eff}} + \Delta n)L}}{{2n + 1}} - \frac{{4\Delta {n_{eff}}L}}{{2n + 1}}$$ (4)

      当光纤所处外界环境的折射率发生变化时,会引起光纤中包层模式的改变,从而导致传感光纤中包层模式和纤芯模式的有效折射率差发生改变,使波长发生漂移。

    • 将传感器固定在如图1所示的实验装置上,实验装置由铁架台,烧杯和升降台组成。将传感器固定在铁架台上并使探头部分保持竖直,烧杯中装有所用来测试的液体,改变升降台的高度来控制探头浸入液体的深度。传感器所连接的光源是C+L波段的宽带光源,输出波长范围为1520~1620 nm,输出光谱由光谱分析仪监测。

      为了便于观测,对传感器长度进行探究,不同长度传感器的输出光谱如图2所示,对比薄芯光纤长度为1.6 cm、1.9 cm、2.5 cm和3 cm的干涉图谱可发现,随着薄芯光纤的长度增加,反射光谱干涉消光比变化波动较明显,自由光谱区范围不断减小。由于薄芯光纤长度为1.6 cm时,输出光谱有一个明显的干涉波谷,并且传感探头此时的长度较短。传感器在该长度下更节约材料并方便测量,因此选择该长度作为最终传感探头长度。

      图  2  不同长度传感器干涉谱图

      Figure 2.  Interference spectra of sensors with different lengths

      由C+L波段光源发出的光经过环形器,环形器的一端连接实验结构,另外一端连接光功率计,当未镀银膜时,光功率计显示示数只有3.450 μW,当涂覆银膜后光功率计的示数达到了111.2 μW,粗略计算了一下涂覆银膜后功率提高了约31倍。

      利用快速傅里叶变换(FFT)进行光谱的频谱分析,分析产生干涉的模式组成并过滤干扰。如图3所示,空间频谱在0.025 nm−1附近处存在一个主峰和其他频率存在的一些峰,主峰是由于薄芯光纤中的纤芯模式形成的,其他频率的峰是由于包层中模式传播形成的。干涉现象是光从FCF传播到TCF时,由于纤芯直径的不匹配,激发了不同的纤芯模式和包层模式。干涉图谱由包层模式和纤芯模式产生干涉而形成。

      图  3  传感结构FFT频谱示意图

      Figure 3.  Schematic diagram of the FFT spectrum of the sensing structure

      该实验主要对传感器的折射率敏感特性进行探究,由于传感器自身的一些敏感特性和外界环境的原因,会影响传感器对特定参量的测试结果。因此首先对传感器在液体中的稳定性进行了实验的测试探究。在室温下将传感器垂直浸没在去离子水中观察输出光谱的变化。每10 min记录一次数据,如图4所示,传感器在去离子水中具有较优异的稳定性。因此在对折射率进行测量时,可忽略传感器自身和液体环境对测量结果造成的干扰。

      图  4  传感器在水中稳定性

      Figure 4.  Stability of the sensor in water

      该实验选择使用不同浓度的氯化钠溶液来作为折射率测量的匹配液,将溶液分别配制成5%、10%、15%、20%、25%的浓度。0%、5%、10%、15%、20%、25%的氯化钠溶液所对应的折射率分别为1.3333、1.3424、1.3516、1.3609、1.3701和1.3794。将所配制好不同浓度的氯化钠溶液分别装进10 mL的试管当中,并将试管置于试管架中然后放在升降台上。将传感探头竖直固定在铁架台上,利用升降台并控制升降台的高度使传感探头浸没在不同折射率溶液的试管中,完成对不同折射率的测量。

      图5(a)所示,随着折射率的增大,干涉图谱中的干涉波谷发生明显的红移,传感器在氯化钠溶液中对折射率的灵敏度为137.317 nm/RIU。对其产生的红移进行了线性拟合,如图5(b)所示,可以发现该传感器对折射率的敏感特性具有优异的线性度,达到了0.999。相较于其他利用波长漂移来对液体折射率进行测量的传感器,该传感器具有优异的线性度和灵敏度。

      图  5  (a) 传感器折射率光谱漂移图;(b) 折射率线性度

      Figure 5.  (a) Spectral shift diagram of refractive index of sensor; (b) Refractive-index linearity

      外界温度的影响会干扰传感器在测量折射率时的准确性,因此对传感器的温度灵敏特性进行了探究。将传感器置于温度控制箱中,保持温度控制箱的温度恒定升高。每升高10 ℃时对温度的测量数据进行记录,实验数据所记录的光谱如图6所示。观察温度变化的干涉图谱可得,随着温度的升高,干涉波谷的漂移较小,因此温度对传感器的影响几乎可以忽略。

      图  6  温度灵敏度

      Figure 6.  Temperature sensitivity

    • 文中提出了一种基于单模光纤-四芯光纤-薄芯光纤(SMF-FCF-TCF)迈克尔逊干涉型折射率传感器。首先改变了传感探头部分薄芯光纤的长度,根据不同长度的传感器干涉光谱可发现,薄芯光纤的长度的改变会改变干涉光谱的自由光谱区和消光比。使用氯化钠配制成六种不同浓度的溶液作为折射率测量的折射率匹配液,通过观察光谱变化发现随着折射率的增大,干涉光谱发生明显的红移。传感器对折射率的灵敏度为137.317 nm/RIU,对不同折射率漂移的波长进行线性拟合,线性度达到0.999,该传感器表现出优异的折射率灵敏度。同时探究了外界温度的改变对传感器折射率传感性能的影响。将传感器置于恒温箱中进行测试,最终发现温度的改变对传感器的影响十分微弱,因此可忽略传感器对折射率测量的影响。该结构的折射率传感器具有良好的结构稳定性,优异的灵敏度和线性响应,并且对外界环境温度的改变反应十分微弱,因此在不同环境下进行折射率的测量具有一定的应用前景。

参考文献 (16)

目录

    /

    返回文章
    返回