留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面光栅垂直腔面发射激光器偏振特性研究

李明 李耀斌 邱平平 颜伟年 贾瑞雯 阚强

李明, 李耀斌, 邱平平, 颜伟年, 贾瑞雯, 阚强. 表面光栅垂直腔面发射激光器偏振特性研究[J]. 红外与激光工程, 2022, 51(5): 20210332. doi: 10.3788/IRLA20210332
引用本文: 李明, 李耀斌, 邱平平, 颜伟年, 贾瑞雯, 阚强. 表面光栅垂直腔面发射激光器偏振特性研究[J]. 红外与激光工程, 2022, 51(5): 20210332. doi: 10.3788/IRLA20210332
Li Ming, Li Yaobin, Qiu Pingping, Yan Weinian, Jia Ruiwen, Kan Qiang. Polarization characteristics of surface grating vertical cavity surface emitting laser[J]. Infrared and Laser Engineering, 2022, 51(5): 20210332. doi: 10.3788/IRLA20210332
Citation: Li Ming, Li Yaobin, Qiu Pingping, Yan Weinian, Jia Ruiwen, Kan Qiang. Polarization characteristics of surface grating vertical cavity surface emitting laser[J]. Infrared and Laser Engineering, 2022, 51(5): 20210332. doi: 10.3788/IRLA20210332

表面光栅垂直腔面发射激光器偏振特性研究

doi: 10.3788/IRLA20210332
基金项目: 国家自然科学基金(62074011,61874145);国家重点研发计划(2018YFA0209000)
详细信息
    作者简介:

    李明,女,博士生,主要从事垂直腔面发射激光器偏振、横模等方面的研究

    通讯作者: 阚强,男,研究员,博士,主要从事垂直腔面发射激光器、DFB激光器等方面的研究。
  • 中图分类号: TN248.4

Polarization characteristics of surface grating vertical cavity surface emitting laser

Funds: National Natural Science Foundation of China (62074011,61874145);National Key Research and Development Program of China(2018YFA0209000)
  • 摘要: 研究了表面光栅结构对垂直腔面发射激光器(VCSEL)的偏振控制作用。引入表面光栅后,对不同刻蚀深度下的偏振相关的镜面损耗进行了仿真,结果表明表面光栅刻蚀深度在44~130 nm范围内均可实现稳定偏振,具有较大的工艺容差。表面光栅VCSEL在基横模工作状态下偏振抑制比(Orthogonal Polarization Suppression Ratio, OPSR)超过20 dB,偏振光谱峰间偏振抑制比达到40 dB,且在多横模状态也实现了有效的偏振控制。为了进一步验证光栅对偏振控制的效果,制作了方向互相垂直的两种表面光栅,具有这两种方向光栅的VCSEL的OPSR均达20 dB以上。测试分析表明表面光栅是VCSEL实现稳定偏振的一种有效手段。
  • 图  1  表面光栅VCSEL截面示意图

    Figure  1.  Cross-section schematic diagram of the surface grating VCSEL

    图  2  表面光栅的扫描电子显微镜照片。其中,光栅周期约为700 nm,占空比为0.5,刻蚀深度约60 nm,光栅区域直径为5 μm

    Figure  2.  SEM images of the surface grating, which with a period of 700 nm, a duty cycle of 0.5, and an etching depth of about 60 nm. The diameter of the grating area is 5 μm

    图  3  镜面损耗随光栅刻蚀深度的变化

    Figure  3.  Mirror loss varies with the etching depth of the grating

    图  4  偏振测试系统

    Figure  4.  Polarization test system

    图  5  普通VCSEL的偏振P-I曲线

    Figure  5.  Polarization-resolved light-current characteristics of ordinary VCSEL

    图  6  基横模状态下表面光栅VCSEL的偏振特性。(a)远场特性;(b)偏振P-I曲线;(c)偏振光谱;(d)偏振在出光平面上的分布

    Figure  6.  (a) Far-field characteristics, (b) Polarization-resolved P-I curve, (c) Polarization-resolved spectrum, and (d) The distribution of polarization states in the polar coordinate plane of the basic transverse mode surface grating VCSEL

    图  7  多横模状态下表面光栅VCSEL的偏振特性。(a)偏振P-I曲线;(b)偏振光谱;(c)偏振在出光平面上的分布

    Figure  7.  (a) Polarization-resolved P-I curve, (b) Polarization-resolved spectrum, and (c) Distribution of polarization states in the polar coordinate plane of a multi-transverse mode surface grating VCSEL

    图  8  不同方向的表面光栅VCSEL的偏振P-I曲线

    Figure  8.  Polarization-resolved P-I curves of surface grating VCSELs in different directions

  • [1] Ostermann J M, Debernardi P, Jalics C, et al. Monolithic polarization control of multimode VCSELs by a dielectric surface grating[M]//Lei C, Choquette K D, Kilcoyne S P. Vertical-Cavity Surface-Emitting Lasers Viii, 2004: 201-212.
    [2] Shimizu M, Koyama F, Iga K. Polarization characteristics of MOCVD grown GaAs/GaAlAs CBH surface emitting lasers [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1988, 27(9): 1774-1775.
    [3] Van Exter M P, Willemsen M B, Woerdman J P. Characterizing and understanding VCSEL polarization noise[M]//Choquette K D, Lei C. Vertical-Cavity Surface-Emitting Lasers IV, 2000: 58-68.
    [4] Sanmiguel M, Feng Q, Moloney J V. Light-polarization dynamics in surface-emitting semiconductor-lasers [J]. Physical Review A, 1995, 52(2): 1728-1739. doi:  10.1103/PhysRevA.52.1728
    [5] Ostermann J M, Debernardi P, Jalics C, et al. Surface gratings for polarization control of single- and multi-mode oxide-confined vertical-cavity surface-emitting lasers [J]. Optics Communications, 2005, 246(4-6): 511-519. doi:  10.1016/j.optcom.2004.11.045
    [6] Zarin A S, Chakraborty A L, Upadhyay A. Absolute noninvasive measurement of CO2 mole fraction emitted by E. coli and S. aureus using calibration-free 2f WMS applied to a 2004 nm VCSEL [J]. Optics Letters, 2017, 42(11): 2138-2141. doi:  10.1364/OL.42.002138
    [7] Chen B, Claus D, Russ D, et al. Generation of a high-resolution 3D-printed freeform collimator for VCSEL-based 3D-depth sensing [J]. Optics Letters, 2020, 45(19): 5583-5586. doi:  10.1364/OL.401160
    [8] Xie Y Y, Ni P N, Wang Q H, et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions [J]. Nature Nanotechnology, 2020, 15(2): 125-131. doi:  10.1038/s41565-019-0611-y
    [9] Wang Biao, Lu Hongfei, Li Aoqi, et al. Research of TDLAS methane detection system using VCSEL laser as the light source [J]. Infrared and Laser Engineering, 2020, 49(4): 0405002. (in Chinese) doi:  10.3788/IRLA202049.0405002
    [10] Mizutani A, Hatori N, Nishiyama N, et al. A low-threshold polarization-controlled vertical-cavity surface-emitting laser grown on GaAs (311)B substrate [J]. IEEE Photonics Technology Letters, 1998, 10(5): 633-635. doi:  10.1109/68.669216
    [11] Nishiyama N, Mizutani A, Hatori N, et al. Lasing characteristics of InGaAs-GaAs polarization controlled vertical-cavity surface-emitting laser grown on GaAs (311) B substrate [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3): 530-536. doi:  10.1109/2944.788415
    [12] Choquette K D, Leibenguth R E. Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries [J]. IEEE Photonics Technology Letters, 1994, 6(1): 40-42. doi:  10.1109/68.265883
    [13] Deng T, Wu Z M, Xie Y Y, et al. Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers [J]. Applied Optics, 2013, 52(16): 3833-3837. doi:  10.1364/AO.52.003833
    [14] Haglund E, Jahed M, Gustavsson J S, et al. High-power single transverse and polarization mode VCSEL for silicon photonics integration [J]. Opt Express, 2019, 27(13): 18892-18899. doi:  10.1364/OE.27.018892
    [15] Huang M C, Zhou Y, Chang-hasnain C J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating [J]. Nature photonics, 2007, 1(2): 119-122. doi:  10.1038/nphoton.2006.80
    [16] Yee K S. Numerical solution of initial boundary value problems involving maxwells equations in isotropic media [J]. IEEE Transactions on Antennas and Propagation, 1966, AP14(3): 302-307.
    [17] Kuksenkov D V, Temkin H. Polarization related properties of vertical-cavity surface-emitting lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(2): 390-395. doi:  10.1109/2944.605683
  • [1] 伍凯凯, 谢博娅, 陈琳, 游淞清, 熊哲文, 杨鹏.  基于光学偏振控制的散粒噪声极限微振动光学测量方法 . 红外与激光工程, 2023, 52(7): 20220872-1-20220872-10. doi: 10.3788/IRLA20220872
    [2] 陈加伟, 李豫东, 玛丽娅, 李钰, 郭旗.  850 nm垂直腔面发射激光器的辐射效应 . 红外与激光工程, 2022, 51(5): 20210326-1-20210326-6. doi: 10.3788/IRLA20210326
    [3] 毛玉政, 陈亚婧, 朱京平.  基于Bragg光栅的超高消光比SOI波导偏振器设计 . 红外与激光工程, 2022, 51(8): 20210713-1-20210713-7. doi: 10.3788/IRLA20210713
    [4] 宗梦雅, 代京京, 李尉, 温丛阳, 张彤, 王智勇.  质子注入对GaAs基器件隔离研究 . 红外与激光工程, 2022, 51(12): 20220141-1-20220141-7. doi: 10.3788/IRLA20220141
    [5] 王秋华, 李明, 邱平平, 庞伟, 解意洋, 阚强, 徐晨.  894 nm高温工作氧化限制型基横模VCSEL研究 . 红外与激光工程, 2022, 51(5): 2021G007-1-2021G007-7. doi: 10.3788/IRLA2021G007
    [6] 李志锋, 李倩, 景友亮, 周玉伟, 周靖, 陈平平, 周孝好, 李宁, 陈效双, 陆卫.  等离激元微腔耦合长波红外量子阱高消光比偏振探测器(特邀) . 红外与激光工程, 2021, 50(1): 20211006-1-20211006-10. doi: 10.3788/IRLA20211006
    [7] 佟海霞, 佟存柱, 王子烨, 陆寰宇, 汪丽杰, 田思聪, 王立军.  850 nm高速垂直腔面发射激光器技术研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201077-1-20201077-8. doi: 10.3788/IRLA20201077
    [8] 单良, 徐良, 洪波, 曹丽霞, 王道档, 郭天太, 孔明.  小角前向散射偏振比法颗粒粒度分布反演 . 红外与激光工程, 2019, 48(1): 117001-0117001(8). doi: 10.3788/IRLA201948.0117001
    [9] 苏安, 蒙成举, 唐秀福, 潘继环, 高英俊.  对称结构光子晶体的表面光学Tamm态 . 红外与激光工程, 2019, 48(8): 817001-0817001(7). doi: 10.3788/IRLA201948.0817001
    [10] 邓学松, 方明, 吴博, 黄志祥.  倒梯形双层金属光栅式偏振分束器 . 红外与激光工程, 2019, 48(3): 320002-0320002(7). doi: 10.3788/IRLA201948.0320002
    [11] 沈辉, 全昭, 杨依枫, 赵翔, 柏刚, 何兵, 周军.  基于光学零差偏振探测和锁相的合束激光偏振控制 . 红外与激光工程, 2018, 47(1): 103007-0103007(6). doi: 10.3788/IRLA201746.0103007
    [12] 袁浚, 张正平, 解意洋.  新型正方晶格基横模光子晶体面发射激光器 . 红外与激光工程, 2018, 47(6): 606005-0606005(6). doi: 10.3788/IRLA201847.0606005
    [13] 段倩倩, 唐海泉, 任馨宇, 菅傲群, 魏重光, 桑胜波, 张文栋.  硅氢键对波导表面光滑化影响的理论仿真 . 红外与激光工程, 2016, 45(8): 816001-0816001(5). doi: 10.3788/IRLA201645.0816001
    [14] 龚梦帆, 肖光宗, 于旭东, 张斌.  一体化Y型腔正交偏振氦氖激光器的温度场仿真与实验 . 红外与激光工程, 2016, 45(5): 505002-0505002(6). doi: 10.3788/IRLA201645.0505002
    [15] 孙贤明, 万隆, 王海华.  激光雷达探测水云退偏振比的敏感性研究 . 红外与激光工程, 2016, 45(9): 906001-0906001(5). doi: 10.3788/IRLA201645.0906001
    [16] 孔英秀, 柯熙政, 杨媛.  空间相干光通信中本振光功率对信噪比的影响 . 红外与激光工程, 2016, 45(2): 222002-0222002(6). doi: 10.3788/IRLA201645.0222002
    [17] 蒋国庆, 徐晨, 解意洋, 荀孟, 曹亚鹏, 陈弘达.  质子注入型光子晶体垂直腔面发射激光器制备 . 红外与激光工程, 2016, 45(12): 1205001-1205001(5). doi: 10.3788/IRLA201645.1205001
    [18] 李永倩, 孟祥腾, 安琪, 吕安强, 王跃, 王宇.  电光调制器自适应偏振控制系统设计与实现 . 红外与激光工程, 2015, 44(6): 1854-1858.
    [19] 闻东海, 江月松, 华厚强, 余荣, 张彦仲.  激光雷达主动偏振图像散斑抑制算法 . 红外与激光工程, 2014, 43(4): 1130-1134.
    [20] 梁善勇, 张伟, 王江安, 吴荣华, 马治国.  舰船尾流共轴激光雷达近场抑制比的计算方法 . 红外与激光工程, 2012, 41(8): 2063-2067.
  • 加载中
图(8)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  93
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-06-16
  • 刊出日期:  2022-06-08

表面光栅垂直腔面发射激光器偏振特性研究

doi: 10.3788/IRLA20210332
    作者简介:

    李明,女,博士生,主要从事垂直腔面发射激光器偏振、横模等方面的研究

    通讯作者: 阚强,男,研究员,博士,主要从事垂直腔面发射激光器、DFB激光器等方面的研究。
基金项目:  国家自然科学基金(62074011,61874145);国家重点研发计划(2018YFA0209000)
  • 中图分类号: TN248.4

摘要: 研究了表面光栅结构对垂直腔面发射激光器(VCSEL)的偏振控制作用。引入表面光栅后,对不同刻蚀深度下的偏振相关的镜面损耗进行了仿真,结果表明表面光栅刻蚀深度在44~130 nm范围内均可实现稳定偏振,具有较大的工艺容差。表面光栅VCSEL在基横模工作状态下偏振抑制比(Orthogonal Polarization Suppression Ratio, OPSR)超过20 dB,偏振光谱峰间偏振抑制比达到40 dB,且在多横模状态也实现了有效的偏振控制。为了进一步验证光栅对偏振控制的效果,制作了方向互相垂直的两种表面光栅,具有这两种方向光栅的VCSEL的OPSR均达20 dB以上。测试分析表明表面光栅是VCSEL实现稳定偏振的一种有效手段。

English Abstract

    • 基于砷化镓(GaAs)材料体系并生长在(100)取向衬底上的标准垂直腔面发射激光器(VCSEL)没有先天的机制来选择特定的偏振方向[1]。VCSEL多为圆形对称的结构且其布拉格反射镜没有偏振依赖性,这导致了各向同性的增益,因此,VCSEL中存在不稳定的偏振。早在1988年研究人员就发现VCSEL中的偏振大多沿着[011]和[01]两个晶向[2]。VCSEL因腔长较短通常工作在单纵模状态,但其横向尺寸较大,易出现高阶横模。这些模式中的每一种模式都包含两种正交的偏振态[3],这两种偏振态在温度或者偏置电流变化过程中可能会发生切换[4]。由于弹光效应和电光效应引入的双折射可导致偏振切换时的频移高达几十GHz[5],偏振切换使得VCSEL不适用于要求频率稳定的场景中,如一些光学元器件、光谱学、原子传感等[6-9],因此实现稳定的偏振是十分必要的。改变衬底的指数可以使增益具有各向异性从而选择出单一的偏振,例如,生长在(311)取向的衬底上的VCSEL具有先天的偏振选择优势[10],但是这种特殊取向衬底的外延生长和后续制作工艺难度较大[11]。使用非对称的台面结构也可以在一定程度上增大两个偏振的损耗差,但此方法对偏振的控制作用较弱[12]。外部光反馈也可以实现稳定的偏振[13],然而体积庞大且成本高昂的外部反馈系统与小型化、低成本的初衷相悖。此外,表面光栅被证实可以用来控制偏振。表面光栅能够控制偏振源于光栅对VCSEL中两种偏振模式的反射率不同,进而两种偏振的镜面损耗不同,损耗较小的偏振被保留下来,最终使得VCSEL输出单一的偏振模式。表面光栅中以反相光栅[14]和高对比度光栅(HCG)[15]为主要代表的表面光栅,体现出了优异的偏振控制性能。但反相光栅需要精度较高的外延工艺和刻蚀工艺,HCG制作难度系数较大。

      文中报道了一种直接刻蚀的表面光栅方案,只需在标准VCSEL表面制作区域直径5 μm、周期700 nm、占空比0.5的圆形浅刻蚀光栅即可实现良好的偏振选择。该光栅无需精确的外延厚度和刻蚀深度,并且周期接近激射波长,大大增加了制作容差的同时降低了制作的难度。结合这种直接刻蚀的表面光栅,VCSEL在基横模状态下获得了21 dB的偏振抑制比(OPSR)和40 dB的峰间偏振抑制比(peak-to-peak OPSR),甚至在多横模状态下也表现出良好的偏振控制作用。笔者在同一批次分别制作了两种方向正交的光栅,器件的OPSR均达到20 dB以上,说明光栅的方向确定了偏振的方向,光栅对VCSEL中的偏振能够形成有效的控制。

    • 文中VCSEL的外延结构是利用金属有机化学气相沉积(MOCVD)技术在GaAs衬底上沉积而成。器件结构如图1所示,包括n型GaAs衬底、n型接触层、37对n型Al0.9GaAs∕Al0.12GaAs 分布布拉格反射器(distributed Bragg reflector,DBR)、有源区、22.5对p型Al0.9GaAs∕Al0.12GaAs DBR,以及厚度约60 nm (半对DBR)的p型GaAs接触层。其中,DBR结构采用渐变界面以减小器件的电阻和光损耗,有源区包含3对InGaAs压应变量子阱(QWs),且在有源区上方设置了一层厚度30 nm的高铝组分材料(Al0.98GaAs)用于氧化。笔者在VCSEL表面接触层材料上进行刻蚀来获得表面光栅,用于选择出单一的偏振模式。

      图  1  表面光栅VCSEL截面示意图

      Figure 1.  Cross-section schematic diagram of the surface grating VCSEL

      文中采用电子束曝光(EBL)工艺定义光栅的掩蔽,并利用电感耦合等离子体刻蚀(ICP)工艺完成表面光栅的刻蚀。所制作的光栅周期约为700 nm,占空比为0.5,刻蚀深度约60 nm,光栅区域的直径为5 μm,如图2所示。这种周期接近激射波长的表面光栅没有可以应用的介质理论公式,只能通过数值仿真来获得光栅对偏振的影响。通过时域有限差分法(FDTD)[16]对平行和垂直光栅方向的偏振的反射率进行了仿真,可以得到两个偏振的反射率随光栅刻蚀深度的变化,再根据公式(1)可以得到反射率对应的镜面损耗,从而得到图3所示的两种偏振的镜面损耗随VCSEL表面刻蚀深度的变化。

      图  2  表面光栅的扫描电子显微镜照片。其中,光栅周期约为700 nm,占空比为0.5,刻蚀深度约60 nm,光栅区域直径为5 μm

      Figure 2.  SEM images of the surface grating, which with a period of 700 nm, a duty cycle of 0.5, and an etching depth of about 60 nm. The diameter of the grating area is 5 μm

      图  3  镜面损耗随光栅刻蚀深度的变化

      Figure 3.  Mirror loss varies with the etching depth of the grating

      $${\alpha _{mirror}} = \frac{1}{{2{L_{eff}}}}\ln \frac{1}{{{R_1}{R_2}}}$$ (1)

      式中:αmirror为镜面损耗;Leff为激光器的有效腔长;R1R2分别为上下DBR的反射率。根据参考文献[17],两个偏振的损耗差达10 cm−1以上时,就可以形成稳定的偏振。由图3可以看出,表面光栅刻蚀深度在44~130 nm范围内镜面损耗差便已超过10 cm−1,因此只要光栅刻蚀深度在此范围内便可获得单一的偏振,无需精确刻蚀。微纳结构的浅刻蚀对于任何刻蚀工艺来说都是一种挑战,而在保证微纳结构形貌的同时实现精确刻蚀将更加困难,这也是此类浅刻蚀光栅制作难度较大的原因。而文中的表面光栅具有较大的工艺容差,大大降低了ICP工艺刻蚀的难度。

      图4为偏振测试系统示意图,测试原理如下:激光器经电流源直流(DC)供电,激光光束通过准直透镜进行准直,再经过偏振片后得到单一偏振态,之后利用分束器将光束分为两路,一路经探测器(PD)得到光电流,一路通过光谱仪(OSA)测得此偏振态光谱,最终使用Labview程序读取数据。旋转偏振片对不同偏振态的光电流和光谱进行测量,从而获得偏振P-I曲线和偏振光谱。偏振控制作用的强弱通过OPSR来体现,其计算公式为:

      $$ O P S R = 10\log \left( {{P_1}/{P_2}} \right) $$ (2)

      式中:P1P2分别为两偏振态的功率,偏振抑制比也表现为偏振光谱中两偏振态峰值间的差异。

      图  4  偏振测试系统

      Figure 4.  Polarization test system

    • 为了更好地说明表面光栅对偏振的控制作用,分别对普通VCSEL和表面光栅VCSEL进行了偏振特性的对比,测试温度均为25 ℃。如图5所示为普通VCSEL的偏振P-I曲线,实线和虚线分别代表TE、TM两种偏振态,可以看出,两种偏振态的功率大小相当,没有偏振态占据主导地位。随后,测试了表面光栅VCSEL的偏振特性,如图6图7所示,分别为工作在基横模状态和高阶横模状态的表面光栅VCSEL的偏振相关测试结果,图中,“Parallel”和“Orthogonal”分别表示平行于或垂直于光栅条方向的偏振。图6(a)(c)(d)均在3 mA的偏置电流下测量,氧化孔直径约为3 μm来获得基横模。其中,图6(a)为表面光栅VCSEL的远场特性,由图可知,该模式为基横模,光斑呈圆形对称且远场发散角约10°。图6(b)为偏振P-I曲线,根据公式(1)可得OPSR约为21 dB。利用表面光栅控制偏振,通过缩小氧化孔径来获得基横模。VCSEL中的每个横模均包含两个正交的偏振态[3],故高阶横模的存在使VCSEL中偏振的方向更加复杂,导致偏振控制的难度加大。较小的氧化孔可以输出更为纯净单一的横向模式,这样偏振光谱可以得到更好的偏振控制效果,如图6(c)偏振光谱所示,基横模状态下peak-to-peak OPSR高达40 dB。偏振P-I曲线和偏振光谱获得的偏振抑制比数值不同的原因为偏振光谱忽略了自发辐射部分。为了更直观地体现偏振态在出光平面上的分布,测试了偏振强度随角度Theta的变化,如图6(d)所示,将与光栅条平行的方向设置为0°,不难看出,垂直于光栅方向的偏振强度最强,也就是说形成了以垂直光栅方向的偏振为主的偏振控制。

      图  5  普通VCSEL的偏振P-I曲线

      Figure 5.  Polarization-resolved light-current characteristics of ordinary VCSEL

      图  6  基横模状态下表面光栅VCSEL的偏振特性。(a)远场特性;(b)偏振P-I曲线;(c)偏振光谱;(d)偏振在出光平面上的分布

      Figure 6.  (a) Far-field characteristics, (b) Polarization-resolved P-I curve, (c) Polarization-resolved spectrum, and (d) The distribution of polarization states in the polar coordinate plane of the basic transverse mode surface grating VCSEL

      图  7  多横模状态下表面光栅VCSEL的偏振特性。(a)偏振P-I曲线;(b)偏振光谱;(c)偏振在出光平面上的分布

      Figure 7.  (a) Polarization-resolved P-I curve, (b) Polarization-resolved spectrum, and (c) Distribution of polarization states in the polar coordinate plane of a multi-transverse mode surface grating VCSEL

      与基横模相比,多横模VCSEL要实现偏振控制更具挑战性。表面光栅VCSEL在多横模状态下的偏振特性如图7所示,多横模的获得来自于较大的氧化孔径。图7(a)~(c)分别为偏振P-I特性、偏振光谱,以及沿出光面的偏振态强度分布。图7(a)(b)显示的OPSR和peak-to-peak OPSR分别为23 dB和33 dB,表面光栅在高阶横模状态下依然表现出卓越的偏振选择能力。与图6(d)类似,图7(c)显示最强偏振方向与光栅条方向垂直。以上测试结果表明,表面光栅VCSEL在全电流范围内实现了有效的偏振控制,这是表面光栅偏振控制能力的强有力证明。

      实际中许多因素都可能导致VCSEL中的偏振发生切换,比如,工艺中台面和氧化孔的形状不是完美对称的圆形、测试中电流注入不均匀等。为了验证偏振选择与光栅方向之间的关系,。笔者选取了(100)朝[110]晶向偏2°的GaAs衬底,并制作了两种方向正交的光栅,两光栅方向分别为[011]偏2°方向和[01]晶向方向。两种表面光栅VCSEL的偏振P-I曲线如图8所示,图中显示的OPSR均超过20 dB,表明变换光栅的方向依然可以实现稳定的偏振,主偏振的方向是由光栅方向决定的。因此,无需刻意将光栅方向对准某一晶向,所制作的表面光栅依然可以实现稳定的偏振。

      图  8  不同方向的表面光栅VCSEL的偏振P-I曲线

      Figure 8.  Polarization-resolved P-I curves of surface grating VCSELs in different directions

    • 笔者研制了一种具有稳定偏振的表面光栅VCSEL,这种偏振稳定的VCSEL在原子传感、气体探测等具有频率稳定要求的场景中具有巨大的应用潜力。

      文中,表面光栅被直接蚀刻在常规VCSEL外延结构上,具有较大的周期,相对易于制备;与反向光栅结构相比,不需要额外外延高精度的外延层,并具有较大的刻蚀深度容差,大大降低了工艺难度。在基横模状态下,器件的peak-to-peak OPSR高达40 dB,并且在多横模状态下,也表现出良好的偏振控制性能。此外,制作了两种方向互相垂直的表面光栅,对应的OPSR均在20 dB以上,验证了不同方向表面光栅对VCSEL偏振态稳定而有效的控制作用。

参考文献 (17)

目录

    /

    返回文章
    返回