留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合CNN和SRC决策的SAR图像目标识别方法

陆建华

陆建华. 融合CNN和SRC决策的SAR图像目标识别方法[J]. 红外与激光工程, 2022, 51(3): 20210421. doi: 10.3788/IRLA20210421
引用本文: 陆建华. 融合CNN和SRC决策的SAR图像目标识别方法[J]. 红外与激光工程, 2022, 51(3): 20210421. doi: 10.3788/IRLA20210421
Lu Jianhua. Decision fusion of CNN and SRC with application to SAR target recognition[J]. Infrared and Laser Engineering, 2022, 51(3): 20210421. doi: 10.3788/IRLA20210421
Citation: Lu Jianhua. Decision fusion of CNN and SRC with application to SAR target recognition[J]. Infrared and Laser Engineering, 2022, 51(3): 20210421. doi: 10.3788/IRLA20210421

融合CNN和SRC决策的SAR图像目标识别方法

doi: 10.3788/IRLA20210421
基金项目: 江苏省自然科学基金面上项目(BK20201475)
详细信息
    作者简介:

    陆建华,女,讲师,硕士,主要从事信号与信息处理、图像处理方面的研究

  • 中图分类号: TN957

Decision fusion of CNN and SRC with application to SAR target recognition

Funds: General Program of Jiangsu Natural Science Foundation (BK20201475)
  • 摘要: 提出基于卷积神经网络(Convolutional Neural Network,CNN)与稀疏表示分类(Sparse Representation-based Classification,SRC)联合决策的合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别方法。CNN通过深度网络学习SAR图像的多层次特征,进而对其所属的目标类别进行判决。研究表明,CNN在训练样本充足的条件下可以取得很好的识别性能。然而,对于训练样本未能包含的条件,CNN的分类性能通常会出现明显下降。因此,先采用CNN对待识别的测试样本进行分类,再根据输出的决策值(即,各个训练类别对应的后验概率)计算当前分类结果的可靠性。当分类结果判定可靠时,则直接采信CNN的决策,输出测试样本的目标类别。反之,则根据CNN输出的决策值筛选若干候选类别,然后基于它们的训练样本构建全局字典用于SRC分类。对于SRC的分类结果,进一步采用Bayesian融合算法将其与CNN的分类结果进行融合。最终,根据融合后的结果判定测试样本的目标类别。提出方法通过层次化的思路融合CNN和SRC的优势,有利于发挥两者对不同测试条件的优势,达到提高识别稳健性的目的。实验中,基于MSTAR数据集开展测试分析,结果验证了提出方法的有效性。
  • 图  1  识别方法流程分析

    Figure  1.  Analysis of procedure of the recognition method

    图  2  10类目标的识别混淆矩阵

    Figure  2.  Confusion matrix for recognition of 10-class targets

    图  3  实验4下平均识别率

    Figure  3.  Average recognition rates under experiment 4

    表  1  CNN各层描述

    Table  1.   Descriptions of different layers in CNN

    LayerConvolution/Pooling kernelSize of feature map
    Input88×88×1
    Convolution 15×5×2084×84×20
    Pooling 12×2×2042×42×20
    Convolution 25×5×4038×38×40
    Pooling 22×2×4019×19×40
    Convolution 34×4×8016×16×80
    Pooling 32×2×808×8×80
    Convolution 43×3×1606×6×160
    Pooling 42×2×1603×3×160
    Convolution 53×3×N1×1×N
    softmaxN
    下载: 导出CSV

    表  2  实验1下的测试与训练样本:包含10类目标

    Table  2.   Training and testing samples under experiment 1: Including 10-class targets

    Class
    TrainingTesting
    Elevation angle/(°)Sample amountElevation angle/(°)Sample amount
    BMP2 17








    214 15








    174
    BTR70 214 175
    T72 213 175
    T62 278 256
    BRDM2 277 257
    BTR60 234 174
    ZSU23/4 278 249
    D7 278 249
    ZIL131 278 249
    2S1 278 249
    下载: 导出CSV

    表  3  实验1下平均识别率

    Table  3.   Average recognition rates under experiment 1

    Recognition methodOursSVMSRCCNN
    Average recognition rate99.36%98.64%98.23%99.08%
    下载: 导出CSV

    表  4  实验2下的训练和测试样本:包含3类目标

    Table  4.   Training and testing samples under experiment 2: Including 3-class targets

    Class
    TrainingTesting
    Elevation angle/(°)ConfigurationSample amountElevation angle/(°)ConfigurationSample amount
    BMP2
    17



    9 563
    214
    15



    9 566 175
    c21 175
    BTR70 c71 214 c71 175
    T72
    132
    213
    812 174
    s7 167
    下载: 导出CSV

    表  5  实验2下平均识别率

    Table  5.   Average recognition rates under experiment 2

    Recognition methodOursSVMSRCCNN
    Average recognition rate 95.42% 92.58% 92.14% 93.96%
    下载: 导出CSV

    表  6  实验3训练与测试样本:包含3类目标

    Table  6.   Training and testing samples under experiment 3: Including 3-class targets

    ClassTrainingTesting
    Elevation angle/(°)Sample amountElevation angle/(°)Sample amount
    2S1 17 277 30 267
    45 285
    BRDM2 276 30 266
    45 285
    ZSU23/4 277 30 267
    45 285
    下载: 导出CSV

    表  7  实验3下平均识别率

    Table  7.   Average recognition rates under experiment 3

    Recognition methodOursSVMSRCCNN
    Average recognition rate
    30°97.56%94.52%95.87%97.04%
    45°71.64%66.64%65.42%67.56%
    下载: 导出CSV
  • [1] El-darymli K, Gill E W, Mcguire P, et al. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review [J]. IEEE Access, 2016, 4: 6014-6058. doi:  10.1109/ACCESS.2016.2611492
    [2] Anagnostopoulos G C. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors [J]. Nonlinear Analysis, 2009, 71(2): 2934-2939.
    [3] Zhao P J, Gan K. SAR target recognition based on hierarchical decision fusion of complementary features [J]. Electronics Optics & Control, 2018, 25(10): 28-32. (in Chinese) doi:  10.3969/j.issn.1671-637X.2018.10.006
    [4] Xie Q, Zhang H. Multi-level SAR image enhancement based on regularization with application to target recognition [J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(9): 157-162. (in Chinese)
    [5] Wen G J, Zhu G Q, Yin H C, et al. SAR ATR based on 3D parametric electromagnetic scattering model [J]. Journal of Radar, 2017, 6(2): 115-135. (in Chinese)
    [6] Ding B Y, Wen G J, Yu L S, et al. Matching of attributed scattering center and its application to synthetic aperture radar automatic target recognition [J]. Journal of Radar, 2017, 6(2): 157-166. (in Chinese)
    [7] Ding B Y, Wen G J, Zhong J R, et al. A robust similarity measure for attributed scattering center sets with application to SAR ATR [J]. Neurocomputing, 2017, 219: 130-143. doi:  10.1016/j.neucom.2016.09.007
    [8] Han P, Wang H. Research on the synthetic aperture radar target recognition based on KPCA and sparse representation [J]. Journal of Signal Processing, 2013, 29(13): 1696-1701. (in Chinese)
    [9] Cui Z Y, Cao Z J, Yang J Y, et al. Target recognition in synthetic aperture radar via non-negative matrix factorization [J]. IET Radar, Sonar and Navigation, 2015, 9(9): 1376-1385. doi:  10.1049/iet-rsn.2014.0407
    [10] Dong G G, Kuang G Y, Wang N, et al. SAR target recognition via joint sparse representation of monogenic signal [J]. IEEE Journal of Selected Topics Applied Earth Observation and Remote Sensing, 2015, 8(7): 3316-3328. doi:  10.1109/JSTARS.2015.2436694
    [11] Wang Y Y. SAR target recognition based on monogenic features via multiset canonical correlation analysis [J]. Electronics Optics & Control, 2019, 26(10): 7-11, 29. (in Chinese) doi:  10.3969/j.issn.1671-637X.2019.10.002
    [12] Liu Z C, Qu B D. Application of complex bidimensional empirical mode decomposition in SAR target recognition [J]. Infrared and Laser Engineering, 2021, 50(5): 20200309. (in Chinese)
    [13] Liu H C, Li S T. Decision fusion of sparse representation and support vector machine for SAR image target recognition [J]. Neurocomputing, 2013, 113: 97-104.
    [14] Wu T B, Xia J B, Huang Y Y, et al. Target recognition method of SAR images based on cascade decision fusion of SVM and SRC [J]. Journal of Henan Polytechnic University (Natural Science), 2020, 39(4): 118-124. (in Chinese)
    [15] Thiagaraianm J, Ramamurthy K, Knee P P, et al. Sparse representations for automatic target classification in SAR images[C]//4th Communications, Control and Signal Processing, 2010: 1–4.
    [16] Zhang H, Zuo X L, Huang Y, et al. Feature selection based on the correlation of sparse coefficient vectors with application to SAR target recognition [J]. Laser & Optoelectronics Progress, 2020, 57(14): 263-270. (in Chinese)
    [17] Tang J S, Qing S H. SAR images recognition based on sparse coefficients optimal local reconstruction [J]. Journal of Detection & Control, 2021, 43(2): 69-75, 80. (in Chinese)
    [18] Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. doi:  10.1109/TGRS.2016.2551720
    [19] Zhang P P, Luo H B, Ju M R, et al. An improved capsule and its application in target recognition of SAR images [J]. Infrared and Laser Engineering, 2020, 49(5): 20201010. (in Chinese) doi:  10.3788/irla.26_invited-zhangpanpan
    [20] Ding J, Chen B, Liu H W, et al. Convolutional neural network with data augmentation for SAR target recognition [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 1-5. doi:  10.1109/LGRS.2016.2516941
    [21] Yan Y. Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition [J]. Journal of Electronic Imaging, 2018, 27(2): 023024.
    [22] Jin L Z, Chen J J, Peng X G. Reliability analysis for decision fusion and its application in target recognition of SAR images [J]. Telecommunication Engineering, 2019, 59(4): 409-414. (in Chinese) doi:  10.3969/j.issn.1001-893x.2019.04.007
  • [1] 游丽.  基于块稀疏贝叶斯学习的SAR图像目标方位角估计方法 . 红外与激光工程, 2022, 51(4): 20210282-1-20210282-6. doi: 10.3788/IRLA20210282
    [2] 蒋筱朵, 赵晓琛, 冒添逸, 何伟基, 陈钱.  采用传感器融合网络的单光子激光雷达成像方法 . 红外与激光工程, 2022, 51(2): 20210871-1-20210871-7. doi: 10.3788/IRLA20210871
    [3] 庄子波, 邱岳恒, 林家泉, 宋德龙.  基于卷积神经网络的激光雷达湍流预警 . 红外与激光工程, 2022, 51(4): 20210320-1-20210320-10. doi: 10.3788/IRLA20210320
    [4] 宦克为, 李向阳, 曹宇彤, 陈笑.  卷积神经网络结合NSST的红外与可见光图像融合 . 红外与激光工程, 2022, 51(3): 20210139-1-20210139-8. doi: 10.3788/IRLA20210139
    [5] 廖辉传, 赵海霞.  基于分类器决策融合的红外图像目标识别方法 . 红外与激光工程, 2022, 51(8): 20210725-1-20210725-6. doi: 10.3788/IRLA20210725
    [6] 李正伟, 黄孝斌, 胡尧.  基于二维随机投影特征典型相关分析融合的SAR ATR方法 . 红外与激光工程, 2022, 51(10): 20220029-1-20220029-8. doi: 10.3788/IRLA20220029
    [7] 李宁, 王军敏, 司文杰, 耿则勋.  基于最大熵准则的多视角SAR目标分类方法 . 红外与激光工程, 2021, 50(12): 20210233-1-20210233-7. doi: 10.3788/IRLA20210233
    [8] 尚珊珊, 余子开, 范涛, 金利民.  高斯过程模型在SAR图像目标识别中的应用 . 红外与激光工程, 2021, 50(7): 20200337-1-20200337-7. doi: 10.3788/IRLA20200337
    [9] 刘志超, 屈百达.  复数二维经验模态分解在SAR目标识别中的应用 . 红外与激光工程, 2021, 50(5): 20200309-1-20200309-8. doi: 10.3788/IRLA20200309
    [10] 伍友龙.  多元经验模态分解及在SAR图像目标识别中的应用 . 红外与激光工程, 2021, 50(4): 20200236-1-20200236-7. doi: 10.3788/IRLA20200236
    [11] 马丹丹.  图像分块匹配的SAR目标识别方法 . 红外与激光工程, 2021, 50(10): 20210120-1-20210120-8. doi: 10.3788/IRLA20210120
    [12] 吴剑波, 陆正武, 关玉蓉, 王庆东, 姜国松.  二维压缩感知多投影矩阵特征融合的SAR目标识别方法 . 红外与激光工程, 2021, 50(6): 20200531-1-20200531-7. doi: 10.3788/IRLA20200531
    [13] 李亚娟.  结合多决策准则稀疏表示的SAR图像目标识别方法 . 红外与激光工程, 2021, 50(8): 20210138-1-20210138-8. doi: 10.3788/IRLA20210138
    [14] 裴晓敏, 范慧杰, 唐延东.  多通道时空融合网络双人交互行为识别 . 红外与激光工程, 2020, 49(5): 20190552-20190552-6. doi: 10.3788/IRLA20190552
    [15] 徐云飞, 张笃周, 王立, 华宝成.  非合作目标局部特征识别轻量化特征融合网络设计 . 红外与激光工程, 2020, 49(7): 20200170-1-20200170-7. doi: 10.3788/IRLA20200170
    [16] 薛珊, 张振, 吕琼莹, 曹国华, 毛逸维.  基于卷积神经网络的反无人机系统图像识别方法 . 红外与激光工程, 2020, 49(7): 20200154-1-20200154-8. doi: 10.3788/IRLA20200154
    [17] 张盼盼, 罗海波, 鞠默然, 惠斌, 常铮.  一种改进的Capsule及其在SAR图像目标识别中的应用 . 红外与激光工程, 2020, 49(5): 20201010-20201010-8. doi: 10.3788/IRLA20201010
    [18] 谢冰, 段哲民.  基于SAE与底层视觉特征融合的无人机目标识别算法 . 红外与激光工程, 2018, 47(S1): 197-205. doi: 10.3788/IRLA201847.S126004
    [19] 郭强, 芦晓红, 谢英红, 孙鹏.  基于深度谱卷积神经网络的高效视觉目标跟踪算法 . 红外与激光工程, 2018, 47(6): 626005-0626005(6). doi: 10.3788/IRLA201847.0626005
    [20] 张腊梅, 陈泽茜, 邹斌.  基于3D卷积神经网络的PolSAR图像精细分类 . 红外与激光工程, 2018, 47(7): 703001-0703001(8). doi: 10.3788/IRLA201847.0703001
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  46
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-01-10
  • 刊出日期:  2022-04-07

融合CNN和SRC决策的SAR图像目标识别方法

doi: 10.3788/IRLA20210421
    作者简介:

    陆建华,女,讲师,硕士,主要从事信号与信息处理、图像处理方面的研究

基金项目:  江苏省自然科学基金面上项目(BK20201475)
  • 中图分类号: TN957

摘要: 提出基于卷积神经网络(Convolutional Neural Network,CNN)与稀疏表示分类(Sparse Representation-based Classification,SRC)联合决策的合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别方法。CNN通过深度网络学习SAR图像的多层次特征,进而对其所属的目标类别进行判决。研究表明,CNN在训练样本充足的条件下可以取得很好的识别性能。然而,对于训练样本未能包含的条件,CNN的分类性能通常会出现明显下降。因此,先采用CNN对待识别的测试样本进行分类,再根据输出的决策值(即,各个训练类别对应的后验概率)计算当前分类结果的可靠性。当分类结果判定可靠时,则直接采信CNN的决策,输出测试样本的目标类别。反之,则根据CNN输出的决策值筛选若干候选类别,然后基于它们的训练样本构建全局字典用于SRC分类。对于SRC的分类结果,进一步采用Bayesian融合算法将其与CNN的分类结果进行融合。最终,根据融合后的结果判定测试样本的目标类别。提出方法通过层次化的思路融合CNN和SRC的优势,有利于发挥两者对不同测试条件的优势,达到提高识别稳健性的目的。实验中,基于MSTAR数据集开展测试分析,结果验证了提出方法的有效性。

English Abstract

    • 合成孔径雷达(Synthetic Aperture Radar,SAR)通过微波成像实现对地表焦点区域的观测侦察。目标识别技术通过在大场景SAR图像定位目标并进行特征分析,获取其所属类别[1]。目标识别算法一般采用特征提取和分类器对测试样本进行分析处理。常用特征通常可区分为以下三类。类别一为几何形状特征,用于描述SAR目标的外形、结构等信息,如轮廓、尺寸、区域[2-4]等。电磁散射特征包括散射中心、极化方式[5-7]等,反映目标的散射机理。变换域特征通过数学投影、域间变换等手段获取稳定特征[8-12],如主成分分析(Principal Component Analysis,PCA)[8]、单演信号[10-11]、模态分解[12]等。常用的分类器包括最近邻分类器[8],通过最小距离或最大相似度准则进行决策;支持向量机(Support Vector Machine,SVM)[13-14],通过大量训练样本获取超参数空间的决策面;稀疏表示分类(Sparse Representation-based Classification,SRC)[15-17],通过稀疏重构比较表示误差进行决策等。近年来,深度学习技术发展迅速,基于卷积神经网络(Convolutional Neural Network,CNN)的图像处理技术获得长足进步。其中,基于CNN的SAR目标识别方法也不断得到丰富和验证[18-21]。然而,当训练样本数量少、覆盖条件不足的情况下,CNN的分类性能一般会出现较为显著的下降。这就导致了CNN对于SAR目标识别中的扩展操作条件(Extended Operating Condition,EOC)的适应能力仍然较差。为此,文中提出基于CNN和SRC决策融合的SAR目标识别方法。对于测试样本,首选采用设计的CNN对其进行识别,并输出其属于各个训练类别的后验概率。通过对概率矢量进行分析,计算分类置信度,用于判断当前决策(即测试样本类别分类为具有最大后验概率的训练类别)是否可靠。若决策可靠,则直接输出CNN的识别结果。反之,则选取若干具有较大后验概率的训练类别构建字典,进一步利用SRC对测试样本进行分类。最后,基于Bayesian理论对CNN和SRC的决策值进行融合并基于融合后的结果判定测试样本的目标类别。实验中,采用MSTAR数据集对方法进行测试分析,共设置了4种实验条件,既包含简单场景也包含相对复杂的场景。通过有现有几类SAR目标识别方法进行全面对比,实验结果有效验证了方法的优势性能。

    • CNN是深度学习技术在二维信号(图像)邻域的扩展,为图像处理与解译提供了新的可靠工具。CNN一般由卷积层(Convolution layer)、池化层(Pooling layer)以及全连接层(Fully-connected layer)组成,通过卷积层中的卷积操作实现对原始输入图像的分析,获取多层次的特征图。卷积层是CNN的核心,通过学习不同的卷积核实现对输入图像不同类型的特征提取。卷积层中,将上一层的特征图与该层的卷积核进行卷积操作并加上偏置项。然后,通过一个非线性激活函数输出卷积层的最终特征图。具体卷积操作为:

      $$ \begin{split} {\textit{z}} = &\sum\limits_{i \in I} {{k_i} * {x_{l - 1}} + {b_i}}\\ {x_l} =& f({\textit{z}}) \end{split} $$ (1)

      式中:${x_{l - 1}}$为上一层的特征图;${\textit{z}}$表示卷积操作后直接输出的特征图输出;${x_l}$为经过非线性激活函数获得的最终特征图;${k_i}$为卷积核;${b_i}$表示偏置项目;“*”代表卷积操作;$f(\cdot)$为非线性激活函数,通常选用ReLU函数。

      实际过程中,通常在卷积层后设置池化层从而减小网络的计算复杂度以及提供稳健性。常用的池化操作包括平均池化和最大值池化。例如,最大值池化(max pooling)的计算方式如下:

      $$x_m^{(l)}(p,q) = \mathop {\max }\limits_{1 < i < h,1 < j < w} (x_m^{(l - 1)}(p + i,q + j))$$ (2)

      根据公式(2),池化操作在特征图上通过$h \times w$的滑动窗口进行数据处理从而去除原始特征图中的冗余信息通过提高网络的整体稳健性。

      在CNN的最后阶段,为了实现类别分类,通常采用一个多类分类器(通常为Softmax)实现目标类别的判定。Softmax是一种典型的概率分类器,可计算当前输入样本属于不同类别的后验概率,进而根据最大概率的原则对其类别做出判断。现阶段,基于CNN的SAR目标识别方法得到了较为广泛的研究,出现了多种新的网络结构[18-21]。文中在先前研究的基础上结合自身在网络设计和测试中的经验设置如表1所描述的CNN结构。该网络包括5个卷积层,4个最大值池化层;每个卷积层的输出均采用ReLU作为激活函数然后进行最大值池化操作。网络的末端,采用Softmax作为分类器,输出类别标签矢量(其中N代表参与分类的类别数目),从而判定目标类别。与网络具体结构对应,通过对原始图像进行裁剪或补齐等获得88×88维度的图像矩阵作为网络输入。

      表 1  CNN各层描述

      Table 1.  Descriptions of different layers in CNN

      LayerConvolution/Pooling kernelSize of feature map
      Input88×88×1
      Convolution 15×5×2084×84×20
      Pooling 12×2×2042×42×20
      Convolution 25×5×4038×38×40
      Pooling 22×2×4019×19×40
      Convolution 34×4×8016×16×80
      Pooling 32×2×808×8×80
      Convolution 43×3×1606×6×160
      Pooling 42×2×1603×3×160
      Convolution 53×3×N1×1×N
      softmaxN
    • CNN可通过Softmax分类器获得当前测试样本属于各个训练类别的后验概率。一般的,可根据最大概率的原则判定测试样本的目标类别。然而,当最大概率值可能与其他概率值十分接近时,决策可靠性并不高。假设$C$个训练类别对应的后验概率分别为$\left[ {{P_1},{P_2}, \cdots ,{P_C}} \right]$,文中定义CNN决策可靠性为:

      $$R{\rm{ = }}\min \left( {\frac{{{P_K}}}{{\max ({P_i})}}} \right)(i \ne K)$$ (3)

      式中:${P_K}$为最大概率值;置信度系数$R$定义为最大概率与次大概率之比,故有$R > 1$$R$越大表明基于最大后验获得CNN决策越可靠。

      通过对置信度系数设置合理的门限,可以对CNN的输出决策进行有效筛选。当置信度高于门限时,认定当前决策可靠,可直接基于CNN完成测试样本的目标识别。反之,CNN的识别结果可靠性不强,则需要进一步对测试样本进行分析,得到更可靠的识别结果。文中正是出于这样的考虑,对CNN的判决结果进行可靠性判断。当CNN能够给出可靠结果时,直接采用CNN的决策作为最终结果。反之,基于CNN输出的后验概率值选取若干训练类别构建字典,然后采用SRC对测试样本进行进一步的分类以及与CNN结果的关联融合,使得最终的识别结果更为精确。

    • SRC通过稀疏线性表示的方法对测试样本进行重构并比较各个训练类别的重构误差[15-17]。集各训练类别构建的字典为$A = [{A^1},{A^2}, \cdots ,{A^C}] \in {{\rm{R}}^{d \times N}}$,其中${A^i} \in {R^{d \times {N_i}}}(i = 1,2, \cdots ,C)$代表第$i$类中的训练样本。测试样本$y$的稀疏重构过程如下:

      $$ \hat \alpha = \arg \min {\left\| \alpha \right\|_0}\;\;\;{\rm{s}}{\rm{.t}}{\rm{. }}\left\| {y{\rm{ - }}A\alpha } \right\|_2^2 \leqslant \varepsilon $$ (4)

      式中:$\alpha $为待求解的系数矢量;$\varepsilon $为重构误差。现阶段,可采用${\ell _{\rm{1}}}$最小化、正交匹配追踪算法(OMP)、贝叶斯压缩感知等算法对公式(4)进行求解。

      根据解得的系数矢量$\hat \alpha $,分别计算各个类别对于测试样本的重构误差进而判定其类别,表示为:

      $$ \begin{split}& r(i) = \left\| {y{\rm{ - }}{A_i}{{\hat \alpha }_i}} \right\|_2^2(i = 1,2, \cdots ,C)\\& {\rm{label }}(y){\rm{ = }}\mathop {\arg \min }\limits_i (r(i)){\rm{ }} \end{split} $$ (5)

      早期研究结果表明,相比最近邻、SVM等经典分类器,SRC早噪声干扰、局部遮挡等非理想条件可以保持更为稳健的分类性能。针对CNN应对扩展操作条件不足的风险,采用SRC进行进一步的决策有利于更为准确地判定未知测试样本的类别,提高目标识别精度。

    • 当CNN的决策判定为不可靠,采用SRC对测试样本进行进一步决策。然而,考虑到CNN的分类结果仍然可以为正确决策提供有效信息,文中基于Bayesian理论对CNN和SRC的分类结果进行融合[22]。记筛选后的$M$个训练类别分别为$\left\{ {{\Omega _1},{\Omega _2}, \cdots ,{\Omega _M}} \right\}$;CNN和SRC对应的决策事件分别为${\varLambda _1}$${\varLambda _2}$,它们对应的概率结果如下:

      $${{P(}}{T_i}{\rm{|}}{\varLambda _j}{\rm{) = }}p_i^j$$ (6)

      式中:$p_i^j(i = 1,2, \cdots ,M;j = 1,2)$代表CNN和SRC对应于类别${\Omega _i}$的概率。认为CNN和SRC的决策相互独立,计算它们的联合概率如下:

      $${{P(}}{\Omega _i}{\rm{|}}\varLambda {{) = P(}}{\Omega _{ii}}{\rm{|}}{\Omega _1}{{)P(}}{\Omega _{ii}}{\rm{|}}{\Omega _2}{\rm{)}}$$ (7)

      此时,根据最大概率原则判定测试样本的目标类别如下:

      $${\rm{Label }}(y){\rm{ = }}\mathop {\arg \max }\limits_i ({{P(}}{\Omega _i}{\rm{|}}Y{\rm{)}}){\rm{ }}$$ (8)

      文中对于CNN和SRC输出的关于候选类别的决策变量进行Bayesian决策融合。在CNN无法获得可靠识别结果的情况下基于融合后的决策值判定测试样本的目标类别。图1所示为文中方法的基本流程。测试样本首先在CNN的分类下获得其属于各个训练类别的后验概率并基于最大概率原则获得初始判决类别。然后,按照1.2节中的方法计算当前决策的可信度。若可信度高于设定的门限${T_1}$,则认为当前决策可靠直接输出目标类别,识别流程结束。反之,若当前决策判定不可靠,则选取后验概率高于门限${T_2}$的训练类别构建字典,对当前测试样本进行SRC分类。最终,基于Bayesian理论对SRC和CNN的决策结果进行融合获得目标类别。

      图  1  识别方法流程分析

      Figure 1.  Analysis of procedure of the recognition method

    • 为对文中方法性能进行实验验证,基于MSTAR数据集设置条件进行测试。MSTAR数据集包含了BMP2、BTR70、T72、T62、BRDM2、BTR60、ZSU23/4、D7、ZIL131、2S1共十类地面目标的SAR图像。针对每一类目标,其SAR图像覆盖0°~360°方位角(间隔1°~2°)以及15°、17°、30°和45°等典型俯仰角。其中,BMP2和T72等目标还包含多个子型号。

      针对文中方法,根据多次预先测试,选用门限${T_1}{\rm{ = }}1.2$${T_2}{\rm{ = }}0.25$分别进行CNN的决策可靠性判决以及候选类别的筛选。采用几类现有方法同时进行对比测试,包括基于SVM的方法[12]、基于SRC的方法[13]以及基于CNN的方法[15]。其中,SVM和SRC与文中方法一样采用PCA进行特征提取。

    • 当测试样本与建立的训练样本库相似度较高时,此时的识别条件称为标准操作条件(Standard Operating Condition,SOC),为文中开展的实验1。表2给出了该实验设置的标准操作条件,10类目标的测试与训练样本仅存在2°的俯仰角差异。并且,训练样本的数量多于测试样本,可以较好地覆盖测试样本中的各类情形。图2所示为文中方法的分类混淆矩阵,横纵坐标分别表示样本实际类别和分类结果,对角线元素则是不同目标的正确识别精度。可以看出,各类目标的分类精度均在99%左右,部分类别以100%的概率正确识别。表3列出了所有方法在实验1条件下的平均识别率,文中方法取得了最高的99.36%。由于训练样本对测试样本的描述能力较强,CNN方法的独立识别率便可以达到99.08%。该方法采用SRC对CNN中少量难以可靠识别的样本进行进一步分类以及决策融合,进一步提高了最终的识别性能。

      表 2  实验1下的测试与训练样本:包含10类目标

      Table 2.  Training and testing samples under experiment 1: Including 10-class targets

      Class
      TrainingTesting
      Elevation angle/(°)Sample amountElevation angle/(°)Sample amount
      BMP2 17








      214 15








      174
      BTR70 214 175
      T72 213 175
      T62 278 256
      BRDM2 277 257
      BTR60 234 174
      ZSU23/4 278 249
      D7 278 249
      ZIL131 278 249
      2S1 278 249

      图  2  10类目标的识别混淆矩阵

      Figure 2.  Confusion matrix for recognition of 10-class targets

      表 3  实验1下平均识别率

      Table 3.  Average recognition rates under experiment 1

      Recognition methodOursSVMSRCCNN
      Average recognition rate99.36%98.64%98.23%99.08%
    • 通过对一类目标部分结构、配置进行调整,可以针对性获得该目标的多个子型号,用于不同的用途。MSTAR数据库中,BMP2和T72两类目标就存在多个子型号,可为验证识别方法对于型号差异的稳健性提供支撑,为文中的实验2。该实验的测试和训练集如表4所示,两类目标的测试样本与训练样本来自完全不同的型号。此外,训练和测试样本的俯仰角差异仍然较小,此时对于识别问题存在较大的影响因素就是型号差异。表5对比了各类方法在实验2条件下的分类精度。相比标准操作条件,各方法的平均识别率均出现了小幅度下降。文中方法以97.72%的识别率仍然优于其他各类方法。对于部分与训练样本差异较大的测试样本,CNN的分类能力有限,所以其识别率下降最为显著。文中方法SRC可针对CNN难以可靠分类的样本进行进一步的确认,并最终通过与CNN的决策融合提高分类置信度。因此,在型号差异的条件下,通过综合CNN和SRC进一步提升了整体的识别稳健性。

      表 4  实验2下的训练和测试样本:包含3类目标

      Table 4.  Training and testing samples under experiment 2: Including 3-class targets

      Class
      TrainingTesting
      Elevation angle/(°)ConfigurationSample amountElevation angle/(°)ConfigurationSample amount
      BMP2
      17



      9 563
      214
      15



      9 566 175
      c21 175
      BTR70 c71 214 c71 175
      T72
      132
      213
      812 174
      s7 167

      表 5  实验2下平均识别率

      Table 5.  Average recognition rates under experiment 2

      Recognition methodOursSVMSRCCNN
      Average recognition rate 95.42% 92.58% 92.14% 93.96%
    • 在俯仰角差异较大的条件下,即便是同一目标、相同方位角下的两幅SAR图像也可能存在很大的外观区别。利用MSTAR数据集提供的多俯仰角样本,该实验设置测试与训练集如表6所示,用于测试方法在较大俯仰角差异条件下的性能,为文中的实验3。对于2S1、BTR70和BDRM2三类目标,测试样本分别采集自30°、45°两个不同俯仰角;训练样本只包含17°俯仰角的样本。此外,三类目标在当前设置条件下不存在型号等其他差异,因此影响识别问题的主要是俯仰角差异。表7显示了各类方法在当前两个测试俯仰角下的平均识别率。对比而言,45°俯仰角下各类方法的识别率均出现了十分显著的降低,主要是俯仰角差异带来的图像显著变化。文中方法在两个角度下均保持了最佳的性能,验证其对于俯仰角差异的稳健性。与型号差异的条件类似,SRC与CNN对于各种样本的识别具有互补性,通过科学融合有利于提升识别稳健性。

      表 6  实验3训练与测试样本:包含3类目标

      Table 6.  Training and testing samples under experiment 3: Including 3-class targets

      ClassTrainingTesting
      Elevation angle/(°)Sample amountElevation angle/(°)Sample amount
      2S1 17 277 30 267
      45 285
      BRDM2 276 30 266
      45 285
      ZSU23/4 277 30 267
      45 285

      表 7  实验3下平均识别率

      Table 7.  Average recognition rates under experiment 3

      Recognition methodOursSVMSRCCNN
      Average recognition rate
      30°97.56%94.52%95.87%97.04%
      45°71.64%66.64%65.42%67.56%
    • 对于SAR图像目标识别问题,感兴趣目标尤其是非合作目标的训练样本资源十分有限。这就要求设计的识别算法能够在少量训练样本的支持下仍然获得稳健的识别结果。以表1中的训练和测试样本为基准,随机抽取其中训练样本的一定比例用于训练,为文中的实验4。图3显示了在训练样本比例分别为80%、60%、40%和20%时各类方法的识别率曲线。文中方法在各个比例下均取得最高的平均识别率,验证其在有限训练样本下的识别稳健性。尽管CNN在少量训练样本下分类性能不佳,但经过其筛选得到的候选类别仍可以大概率保留测试样本的真实类别。此时,进一步通过SRC分类并与CNN进行决策融合可以得到更为精确的识别结果。

      图  3  实验4下平均识别率

      Figure 3.  Average recognition rates under experiment 4

    • 文中提出联合CNN和SRC决策的SAR目标识别方法。CNN首先对测试样本进行分类,在得到可靠决策的条件下,完成识别任务,输出识别结果。否则,则利用CNN的决策值筛选少量的候选目标构建字典,支持SRC对于测试样本的进一步分类。最终,基于Bayesian理论对CNN和SRC的结果进行决策融合,判定测试样本的目标类别。基于MSTAR数据库对文中方法进行了性能测试,结果表明其在标准操作条件、型号差异、俯仰角差异以及有限训练样本等条件下均可以保持优势性能。特别地,与单一采用CNN或SRC的方法相比,文中方法通过科学的融合处理显著提升了识别性能。这些结果充分验证了文中方法的有效性。

参考文献 (22)

目录

    /

    返回文章
    返回