留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隔离槽对锑化铟探测器芯片断裂的影响

田笑含 张江风 张晓玲 孟庆端

田笑含, 张江风, 张晓玲, 孟庆端. 隔离槽对锑化铟探测器芯片断裂的影响[J]. 红外与激光工程, 2022, 51(5): 20210599. doi: 10.3788/IRLA20210599
引用本文: 田笑含, 张江风, 张晓玲, 孟庆端. 隔离槽对锑化铟探测器芯片断裂的影响[J]. 红外与激光工程, 2022, 51(5): 20210599. doi: 10.3788/IRLA20210599
Tian Xiaohan, Zhang Jiangfeng, Zhang Xiaoling, Meng Qingduan. Effects of isolation trough on cleavage of InSb chip in InSb detector[J]. Infrared and Laser Engineering, 2022, 51(5): 20210599. doi: 10.3788/IRLA20210599
Citation: Tian Xiaohan, Zhang Jiangfeng, Zhang Xiaoling, Meng Qingduan. Effects of isolation trough on cleavage of InSb chip in InSb detector[J]. Infrared and Laser Engineering, 2022, 51(5): 20210599. doi: 10.3788/IRLA20210599

隔离槽对锑化铟探测器芯片断裂的影响

doi: 10.3788/IRLA20210599
基金项目: 国家自然科学基金青年科学基金(61505048);河南省高等学校重点科研项目(19A510012);河南省自然科学基金(202300410157)
详细信息
    作者简介:

    田笑含,男,硕士生,主要从事红外焦平面探测器结构可靠性方面的研究

  • 中图分类号: TN215

Effects of isolation trough on cleavage of InSb chip in InSb detector

Funds: National Natural Science Foundation of China Youth Science Fund(61505048);Key Scientific Research Project of Colleges and Universities in Henan Province(19A510012);Natural Science Foundation of Henan Province(202300410157)
  • 摘要: 液氮冲击中锑化铟(InSb)芯片的断裂现象制约着InSb红外焦平面探测器(IRFPAs)的成品率。在台面结光敏元阵列中,光敏元之间的隔离槽可能会引起应力集中,驱使InSb芯片中的位错线成核、扩展,导致InSb芯片断裂。为定量分析隔离槽对InSb芯片断裂的影响,建立了InSb IRFPAs结构分析模型,剖析了隔离槽结构的引入对InSb芯片前表面应力分布的影响,发现V型隔离槽槽底是应力集中点;随后在V型隔离槽底预置不同长度的初始裂纹以描述位错线的长短,得到能量释放率随预置裂纹长度之间的关系。经分析后认为:隔离槽确能引起InSb芯片中面内正应力在槽底处产生应力集中;该区域的应力集中有利于InSb芯片中位错线增长,贯穿InSb芯片,导致InSb芯片发生断裂;此外,与V型槽底重合的预置裂纹更易引起InSb芯片发生断裂。这些结论能够为分析InSb芯片的断裂提供新的视角。
  • 图  1  InSb IRFPAs结构二维模型(局部)。(a) 不包含隔离槽结构的探测器模型;(b) 加入V型隔离槽后的探测器结构模型;(c) 预置裂纹端点和V型槽底部重合的结构模型;(d) 预置裂纹的下端点距V型槽底部为1 μm的结构模型

    Figure  1.  Two-dimensional model of InSb IRFPAs (local model). (a) Without isolation trough; (b) With V-shaped isolation trough added; (c) Bottom of V-shaped isolation trough is connected with preset crack; (d) Preset crack is away from the bottom of V-shaped isolation trough with a distance of 1 μm

    图  2  InSb、底充胶和Silicon-ROIC的线膨胀系数在不同温度下的值

    Figure  2.  Coefficients of thermal expansion (CTE) depending on temperature for InSb, underfill and Silicon-ROIC

    图  3  (a) InSb芯片前表面的面内正应力分布;(b) 隔离槽附近区域面内正应力分布

    Figure  3.  (a) In-plane normal stress distribution of InSb front surface; (b) In-plane normal stress distribution in region of isolation trough existed

    图  4  预置裂纹下端点和V型槽底部重合时的能量释放率

    Figure  4.  Energy release rate of the preset crack connected with the bottom of V-shaped isolation trough

    图  5  下端点与V型槽底部重合和下端点距V型槽底部为1 μm的裂纹能量释放率比较

    Figure  5.  Comparison of energy release rate between the preset crack connected directly with the bottom of V-shaped isolation trough and the preset crack is away from the bottom of V-shaped isolation trough with a distance of 1 μm

    表  1  InSb IRFPAs所用的材料参数和特征尺寸

    Table  1.   Mechanical parameters and specific sizes of InSb IRFPAs

    MaterialsElastic modulus E/GPaPoison's ratio vTemperature T/KLength/mm×height/mm
    InSb409 (In-plane)0.3577-30010×0.01
    123 (Z-direction)
    Underfill0.0002/α0.3077-30010×0.01
    Silicon-ROIC1630.2877-30012.8×0.3
    下载: 导出CSV
  • [1] Liu Jiachen, Tang Xin, Ju Yonglin. Numerical simulation on the fast cooling-down process of a miniature infrared detector module [J]. Infrared and Laser Engineering, 2015, 44(3): 816-820. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.03.005
    [2] Bai Wei, Zhao Chao, Liu Ming. Development and application of InSb crystal [J]. Journal of Synthetic Crystals, 2020, 49(12): 2230-2243. (in Chinese) doi:  10.3969/j.issn.1000-985X.2020.12.003
    [3] Liang Jinzhi, Xu Changbin, Li Haiyan. Fabrication technology of InSb IR focal plane array [J]. Infrared, 2019, 40(6): 7-12. (in Chinese) doi:  10.3969/j.issn.1672-8785.2019.06.002
    [4] Hu Weida, Li Qing, Chen Xiaoshuang, et al. Recent progress on advanced infrared photodetectors [J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese) doi:  10.7498/aps.68.20190281
    [5] Bai Wei. Development status of InSb infrared focal plane array detectors [J]. Infrared, 2019, 40(8): 1-14. (in Chinese) doi:  10.3969/j.issn.1672-8785.2019.08.001
    [6] Wang Yang, Lu Xing, Meng Chao, et al. Thermal cycle characteristic of InSb focal plane array detector [J]. Infrared and Laser Engineering, 2015, 44(12): 3701-3706. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.12.034
    [7] Lei Shengqiong. Development of InSb infrared material and devices at Kunming Institute of Physics [J]. Infrared and Laser Engineering, 2007, 36(S1): 15-18. (in Chinese) doi:  10.3969/j.issn.1007-2276.2007.z1.007
    [8] Wang Wen, Zhang Xiaolei, Lv Yanqiu, et al. InSb infrared focal plane arrays detector based on Si wafer [J]. Infrared and Laser Engineering, 2014, 43(5): 1359-1363. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.05.001
    [9] Mu Hongshan, Dong Suo, Liang Jinzhi. Study of dead pixels in InSb IRFPA detector [J]. Infrared, 2010, 31(7): 9-13. (in Chinese) doi:  10.3969/j.issn.1672-8785.2010.07.002
    [10] Meng Qingduan, Zhang Xiaoling, Lv Yanqiu, et al. Function reconsideration of indium bump in InSb IRFPAs [J]. Optical and Quantum Electronics, 2019, 51(9): 304. doi:  10.1007/s11082-019-2021-7
    [11] Heidari-Rarani M, Sayedain M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches [J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102246. doi:  10.1016/j.tafmec.2019.102246
    [12] Geng Hongyan, Zhou Zhou, Song Guofeng, et al. Flip chip bonding technology for IR detectors [J]. Infrared and Laser Engineering, 2014, 43(3): 722-726. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.03.010
    [13] Yang D G, Ernst L J, van`t Hof C, et al. Vertical die crack stresses of flip chip induced in major package assembly processes [J]. Microelectronics Reliability, 2000, 40(8-10): 1533-1538. doi:  10.1016/S0026-2714(00)00156-6
    [14] Wang L, Yang J S, Ni J X, et al. Influence of cracks in APS-TBCs on stress around TGO during thermal cycling: A numerical simulation study [J]. Surface & Coatings Technology, 2016, 285: 98-112.
    [15] He Y, Moreira B E, Overson A, et al. Thermal characterization of an epoxy-based underfill material for flip chip packaging [J]. Thermochimica Acta, 2000, 357-358: 1-8. doi:  10.1016/S0040-6031(00)00357-9
    [16] Meng Qingduan, Zhang Xiaoling, Zhang Liwen, et al. Structural modeling of 128× 128 InSb focal plane array detector [J]. Acta Physica Sinica, 2012, 61(19): 190701. (in Chinese) doi:  10.7498/aps.61.190701
    [17] Meng Qingduan, Yu Qian, Zhang Liwen, et al. Mechanical parameters selection in InSb focal plane array detector normal direction [J]. Acta Physica Sinica, 2012, 61(22): 226103. (in Chinese) doi:  10.7498/aps.61.226103
    [18] Rybicki E F, Kanninen M F. A finite element calculation of stress intensity factors by a modified crack closure integral [J]. Engineering Fracture Mechanics, 1977, 9: 931-938. doi:  10.1016/0013-7944(77)90013-3
  • [1] 张业奇, 王贞福, 李特, 陈琅, 张佳晨, 吴顺华, 刘嘉辰, 杨国文.  双应力交叉步进加速退化试验下大功率半导体激光器寿命预测方法 . 红外与激光工程, 2023, 52(5): 20220592-1-20220592-10. doi: 10.3788/IRLA20220592
    [2] 解宇恒, 裴丽, 何倩, 常彦彪, 郭智君, 王建帅, 郑晶晶, 宁提纲, 李晶.  多芯光纤折射率与内应力分布重构技术(特邀) . 红外与激光工程, 2022, 51(1): 20210758-1-20210758-6. doi: 10.3788/IRLA20210758
    [3] 陈杰, 周圣明.  面向高功率激光隔离器的磁光材料(特邀) . 红外与激光工程, 2020, 49(12): 20201072-1-20201072-12. doi: 10.3788/IRLA20201072
    [4] 钟昇佑, 陈楠, 范明国, 张济清, 朱琴, 姚立斌.  640×512数字化InGaAs探测器组件 . 红外与激光工程, 2020, 49(7): 20190495-1-20190495-8. doi: 10.3788/IRLA20190495
    [5] Guo Ming, Zhang Yongxiang, Zhang Wenying, Li Hong.  Thermal damage of monocrystalline silicon irradiated by long pulse laser . 红外与激光工程, 2020, 49(3): 0305002-0305002-9. doi: 10.3788/IRLA202049.0305002
    [6] 张文杰, 李威, 夏群利, 杜肖.  基于滑模扰动观测器的导引头隔离度在线抑制 . 红外与激光工程, 2019, 48(S2): 23-30. doi: 10.3788/IRLA201948.S213002
    [7] 冯秦旭, 齐润泽, 李文斌, 倪航剑, 黄秋实, 张众, 王占山.  涂硼中子探测器用B4C薄膜的应力和粘附力研究 . 红外与激光工程, 2019, 48(S2): 68-74. doi: 10.3788/IRLA201948.S217001
    [8] 丘文夫, 林中晞, 苏辉.  单片集成的低暗电流1.3 μm激光二极管和探测器芯片 . 红外与激光工程, 2018, 47(12): 1220003-1220003(5). doi: 10.3788/IRLA201847.1220003
    [9] 卜笑庆, 张锦龙, 潘峰, 刘华松, 樊荣伟.  HfO2-SiO2混合膜力学性能 . 红外与激光工程, 2018, 47(9): 921001-0921001(6). doi: 10.3788/IRLA201847.0921001
    [10] 白丕绩, 赵俊, 韩福忠, 李立华, 王博, 姚立斌, 李敏.  数字化中波红外焦平面探测器组件研究进展 . 红外与激光工程, 2017, 46(1): 102003-0102003(8). doi: 10.3788/IRLA201746.0102003
    [11] 余少伟, 裴丽, 温晓东, 刘超, 李超.  基于环行腔光纤激光器的应力传感器 . 红外与激光工程, 2016, 45(2): 222004-0222004(4). doi: 10.3788/IRLA201645.0222004
    [12] 曹岚, 邓若汉, 龚海梅.  红外探测器寿命试验自动化真空系统设计 . 红外与激光工程, 2015, 44(6): 1712-1715.
    [13] 胡姝玲, 赵东伟, 牛燕雄, 王欢欢, 肖泽宇.  高功率光隔离器的热效应分析与优化 . 红外与激光工程, 2015, 44(11): 3186-3190.
    [14] 贺锋涛, 曹金凤, 王晓琳, 朱玉晗, 左波, 王静.  基于激光散斑的应力传感系统 . 红外与激光工程, 2015, 44(12): 3729-3733.
    [15] 李春艳, 吴易明, 高立民, 陆卫国.  磁光调制法测量玻璃内应力 . 红外与激光工程, 2015, 44(3): 911-916.
    [16] 康冰心, 蔡毅, 王岭雪, 薛唯, 高岳.  硅化铂红外焦平面探测器性能改进技术分析 . 红外与激光工程, 2014, 43(3): 742-748.
    [17] 童劲超, 黄敬国, 黄志明.  基于铟镓砷材料的新型太赫兹/亚毫米波探测器研究 . 红外与激光工程, 2014, 43(10): 3347-3351.
    [18] 李强, 黄泽铗, 徐雅芹, 张凌云, 史骥, 王智.  基于单模-多模-单模光纤模间干涉的传感系统 . 红外与激光工程, 2014, 43(5): 1630-1636.
    [19] 朱炳金, 林磊, 宋开臣, 王晶.  InSb红外探测器芯片金丝引线键合工艺研究 . 红外与激光工程, 2013, 42(1): 46-50.
    [20] 刘华松, 傅翾, 王利栓, 姜玉刚, 冷健, 庄克文, 季一勤.  离子束溅射参数与Ta2O5薄膜特性的关联性 . 红外与激光工程, 2013, 42(7): 1770-1775.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  48
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2021-10-28
  • 刊出日期:  2022-06-08

隔离槽对锑化铟探测器芯片断裂的影响

doi: 10.3788/IRLA20210599
    作者简介:

    田笑含,男,硕士生,主要从事红外焦平面探测器结构可靠性方面的研究

基金项目:  国家自然科学基金青年科学基金(61505048);河南省高等学校重点科研项目(19A510012);河南省自然科学基金(202300410157)
  • 中图分类号: TN215

摘要: 液氮冲击中锑化铟(InSb)芯片的断裂现象制约着InSb红外焦平面探测器(IRFPAs)的成品率。在台面结光敏元阵列中,光敏元之间的隔离槽可能会引起应力集中,驱使InSb芯片中的位错线成核、扩展,导致InSb芯片断裂。为定量分析隔离槽对InSb芯片断裂的影响,建立了InSb IRFPAs结构分析模型,剖析了隔离槽结构的引入对InSb芯片前表面应力分布的影响,发现V型隔离槽槽底是应力集中点;随后在V型隔离槽底预置不同长度的初始裂纹以描述位错线的长短,得到能量释放率随预置裂纹长度之间的关系。经分析后认为:隔离槽确能引起InSb芯片中面内正应力在槽底处产生应力集中;该区域的应力集中有利于InSb芯片中位错线增长,贯穿InSb芯片,导致InSb芯片发生断裂;此外,与V型槽底重合的预置裂纹更易引起InSb芯片发生断裂。这些结论能够为分析InSb芯片的断裂提供新的视角。

English Abstract

    • 红外焦平面探测器(infrared focal plane arrays, IRFPAs)是现代红外成像系统的关键核心部件[1]。在1~5 μm光谱范围内,锑化铟(Indium antimonide, InSb)材料具有非常高的量子效率和电子迁移率,这使得锑化铟探测器在中波红外波段表现出极高的灵敏度[2-3]。因此,在中波红外、单色探测领域,综合考虑生产成本、像元均匀性和一致性等因素, InSb IRFPAs优势显著,被广泛应用于航空航天红外遥感、国防、气象和科学仪器等领域[4-7]。为了获得较高的信噪比,InSb IRFPAs通常工作于液氮温度(77 K)。液氮冲击中,因相邻材料间线膨胀系数的不同,将在层状InSb IRFPAs结构中产生热失配,生产热应力,引起InSb芯片断裂,制约着其最终的成品率[8]

      针对InSb IRFPAs结构失效问题,牟宏山等[9]认为提高铟柱的高宽比能有效减少液氮冲击后光敏元的盲元数;孟庆端等[10]认为铟柱的存在可引起铟柱与InSb 芯片接触区域生产应力集中。这些研究能够用于解释InSb IRFPAs的失效现象,但不能用于揭示InSb芯片是如何发生断裂的。为此,文中欲基于ANSYS软件,借助虚拟裂纹闭合技术(virtual crack closure technique, VCCT)[11],从断裂力学角度分析隔离槽的存在对InSb芯片断裂的影响。在此基础上,预置虚拟裂纹,研究能量释放率与预置虚拟裂纹尺寸之间的关系。这些研究有望在解释液氮冲击中InSb芯片断裂方面提供新的思路。

    • InSb IRFPAs主要由InSb芯片和硅读出电路(silicon readout integrated circuit,Silicon-ROIC)借助铟柱阵列倒焊互连混成[8],随后填入底充胶以提高铟柱的可靠性[12]。在建立InSb IRFPAs的有限元结构模型时,通常认为倒装焊之后的探测器处于零应力状态。考虑到在铟柱阵列和网状底充胶组成的中间层中,铟柱阵列与中间层的体积比通常小于20%,作为初步分析,可忽略铟柱阵列的影响。底充胶固化中引入的固化应力通常也比较小,可以忽略[13]。鉴于探测器结构的对称性,为降低计算成本,施加对称边界条件,建立起InSb IRFPAs的二维结构分析模型,如图1所示。结构模型建立过程中,采用自底向上的建模方法,三层结构均采用PLANE182单元。

      图  1  InSb IRFPAs结构二维模型(局部)。(a) 不包含隔离槽结构的探测器模型;(b) 加入V型隔离槽后的探测器结构模型;(c) 预置裂纹端点和V型槽底部重合的结构模型;(d) 预置裂纹的下端点距V型槽底部为1 μm的结构模型

      Figure 1.  Two-dimensional model of InSb IRFPAs (local model). (a) Without isolation trough; (b) With V-shaped isolation trough added; (c) Bottom of V-shaped isolation trough is connected with preset crack; (d) Preset crack is away from the bottom of V-shaped isolation trough with a distance of 1 μm

      为提高填充因子,InSb 芯片大多采用台面结构形式,此时InSb芯片正面会刻蚀出光敏元隔离槽,即文中的V型隔离槽,填充底充胶后,隔离槽处会充满底充胶。为评估光敏元隔离槽对InSb芯片中累积热应力的影响,给出了不包含隔离槽结构的探测器模型,具体如图1(a)所示;加入V型隔离槽后探测器的结构模型如图1(b)所示,其中V型隔离槽开口宽度为10 μm,槽深4 μm,槽口坐标位于X=3.995 mm到X=4.005 mm的范围内。InSb晶体生长过程中会引入数量不等的位错线,在液氮冲击下,这些位错线可认为是裂纹成核的起源,伴随着热失配应力的增加,位错线会长大、扩展,最终形成穿通裂纹。为了描述隔离槽对InSb芯片中位错线的影响,在V型槽底部预置了不同长度的裂纹,其中预置裂纹下端点和V型槽底部重合的结构模型如图1(c)所示,预置裂纹下端点距V型槽底部为1 μm的结构模型如图1(d)所示。模型中预置裂纹的长度设定为a

      网格划分时,采用自由网格进行单元划分,并对隔离槽处进行加密处理。预置裂纹尖端具有奇异性,裂纹尖端周围的单元是二次奇异单元[14],因此在APDL代码中使用“KSCON”命令对裂纹尖端进行网格化分,第一行单元的半径是裂纹长度的1/10以下,裂纹尖端一圈的单元数量是15。在结构模型的左下角施加固定约束以防止结构移动。

    • 为准确计算InSb IRFPAs中累积的热应变和热应力,材料模型均采用温度相关模型,其中,Silicon-ROIC视为各向同性线弹性材料;忽略底充胶固化过程的底充胶视为线弹性材料;InSb芯片视为各向异性线弹性材料,将InSb芯片的面内杨氏模量值设定为其体积弹性模量值,法线方向的杨氏模量设定为其体积弹性模量的30%,这归因于InSb芯片在背减薄过程中引入的损伤。具体数值如图2表1所示[15-17],其中E为杨氏模量,v为泊松比。

      α为底充胶的线膨胀系数,在77~300 K的温度范围内,可由公式(1)给出:

      $$ \alpha {\text{ = 22}}{\text{.46}} \times {\text{1}}{{\text{0}}^{ - 6}} + 5.04 \times {\text{1}}{{\text{0}}^{ - 8}} \times \left( {T - 273} \right) $$ (1)

      式中:T的单位为K。

      图  2  InSb、底充胶和Silicon-ROIC的线膨胀系数在不同温度下的值

      Figure 2.  Coefficients of thermal expansion (CTE) depending on temperature for InSb, underfill and Silicon-ROIC

      表 1  InSb IRFPAs所用的材料参数和特征尺寸

      Table 1.  Mechanical parameters and specific sizes of InSb IRFPAs

      MaterialsElastic modulus E/GPaPoison's ratio vTemperature T/KLength/mm×height/mm
      InSb409 (In-plane)0.3577-30010×0.01
      123 (Z-direction)
      Underfill0.0002/α0.3077-30010×0.01
      Silicon-ROIC1630.2877-30012.8×0.3
    • 添加V型隔离槽后的模拟结果如图3所示,这里只给出InSb芯片前表面的面内正应力分布。为便于比对,图3中一同给出不含V型隔离槽时的模拟结果。

      图  3  (a) InSb芯片前表面的面内正应力分布;(b) 隔离槽附近区域面内正应力分布

      Figure 3.  (a) In-plane normal stress distribution of InSb front surface; (b) In-plane normal stress distribution in region of isolation trough existed

      对于不含V型隔离槽的结构来说,随着横标远离中心区域,InSb芯片的面内正应力逐渐减小。当V型隔离槽添加后,InSb芯片面内正应力基本维持了这一趋势,但在V型隔离槽存在的区域,面内正应力则发生了较大的变化,即在V型隔离槽的槽底处达到最大值。随着位置偏离槽底,面内正应力急剧变小,在V型槽的开口处减小到最低,并且这一值要低于V型槽添加前的应力值,随着位置继续向V型槽两侧移动,面内正应力逐渐升高,直至与V型槽添加前相同位置处的应力值重叠。

      应力分布的定量描述如下:对于不包含隔离槽的结构,当横坐标从由X=0 mm移动到X=5.000 mm时,InSb芯片前表面的面内正应力从505.48 MPa逐渐减小至−369.46 MPa。加入V型隔离槽后,在V型隔离槽开口涵盖区域,即横坐标介于3.995~4.005 mm的范围内,面内正应力由259.65 MPa (X=3.995 mm)降至207.32 MPa (X=3.9958 mm),然后急剧上升至1871.6 MPa (X=4.000 mm处,V型槽的槽底处),紧接着下降至185.19 MPa (X=4.0046 mm),最后上升至262.01 MPa (X=4.005 mm),在隔离槽不存在的区域,二者的差别较小。显然,V型隔离槽加入后会形成应力局部集中,在V型隔离槽槽底处达到最大值。因此InSb芯片最有可能从V型槽槽底起裂。

    • VCCT由Rybicki E F和Kanninen M F提出[18],基于如下的假设,即分离一个表面所需的能量与关闭同一表面所需的能量相同。VCCT的核心是:假设裂纹扩展所释放的能量等于将该裂纹闭合到原始状态所做的功,虚拟裂纹尖端后面的张开位移和实际裂纹尖端后面的张开位移近似相等[11]。对于InSb芯片来说,GC是裂纹扩展所需要的临界能量,表示断裂韧性。根据断裂力学的基本准则,当G>GC,裂纹会扩展。

      液氮冲击中,裂纹会从InSb芯片位错线处成核并扩展,终止于InSb芯片表面。为此,计算了位错线扩展时的能量释放率,如图4所示。Ⅰ型裂纹的能量释放率(G)近似等于总能量释放率,Ⅱ型裂纹的能量释放率(GⅡ)接近于零,即GG,由此可知,InSb芯片断裂模式是Ⅰ型断裂模式。随着裂纹长度由1 μm增加到5 μm时,能量释放率G由3.2367 J/m2增加至10.047 J/m2Ga近乎线性关系;当裂纹长度由5 μm增加到6 μm时,裂纹扩展至InSb芯片背面,能量释放率G由10.047 J/m2快速增加至72.455 J/m2,增长速率急剧加大,函数的切线几乎垂直于横轴。因此,当预置裂纹近乎穿透InSb芯片时,能量释放率将会接近一个较大的值,此时,InSb芯片发生断裂的可能性也最大。

      图  4  预置裂纹下端点和V型槽底部重合时的能量释放率

      Figure 4.  Energy release rate of the preset crack connected with the bottom of V-shaped isolation trough

      当预置裂纹下端点不与V型槽底重合时,这里假设预置裂纹距离V型槽底的距离为1 μm,在预置裂纹长度分别取1 μm、2 μm、3 μm和4 μm时,模拟得到的裂纹能量释放率如图5所示。显然,在完全相等的预置裂纹长度下,预置裂纹下端点和V型槽底重合时的能量释放率是预置裂纹下端点距V型槽底部1 μm的能量释放率的两倍,表明预置裂纹与V型隔离槽槽底相连通时影响更大,更易引起位错线成核、扩展,形成宏观裂纹。

      图  5  下端点与V型槽底部重合和下端点距V型槽底部为1 μm的裂纹能量释放率比较

      Figure 5.  Comparison of energy release rate between the preset crack connected directly with the bottom of V-shaped isolation trough and the preset crack is away from the bottom of V-shaped isolation trough with a distance of 1 μm

    • 基于所建的二维有限元模型,分析了光敏元隔离槽对InSb芯片中热应力分布的影响,认为应力集中最易发生在V型隔离槽槽底处,与隔离槽槽底连通的预置裂纹具有更大的能量释放率,更易引起InSb芯片断裂。这为解释液氮冲击中InSb芯片断裂提供了新思路。

参考文献 (18)

目录

    /

    返回文章
    返回