留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光模拟单粒子效应中单光子与双光子吸收诱导电荷量对比

张晨光 安恒 王鷁 曹洲

张晨光, 安恒, 王鷁, 曹洲. 激光模拟单粒子效应中单光子与双光子吸收诱导电荷量对比[J]. 红外与激光工程, 2022, 51(9): 20210954. doi: 10.3788/IRLA20210954
引用本文: 张晨光, 安恒, 王鷁, 曹洲. 激光模拟单粒子效应中单光子与双光子吸收诱导电荷量对比[J]. 红外与激光工程, 2022, 51(9): 20210954. doi: 10.3788/IRLA20210954
Zhang Chenguang, An Heng, Wang Yi, Cao Zhou. Contrast of single-photon and two-photon absorption-induced charges in laser-simulated single event effects[J]. Infrared and Laser Engineering, 2022, 51(9): 20210954. doi: 10.3788/IRLA20210954
Citation: Zhang Chenguang, An Heng, Wang Yi, Cao Zhou. Contrast of single-photon and two-photon absorption-induced charges in laser-simulated single event effects[J]. Infrared and Laser Engineering, 2022, 51(9): 20210954. doi: 10.3788/IRLA20210954

激光模拟单粒子效应中单光子与双光子吸收诱导电荷量对比

doi: 10.3788/IRLA20210954
基金项目: 空间环境材料行为及评价技术国防科技重点实验室基金(6142910190110)
详细信息
    作者简介:

    张晨光,男,工程师,主要从事空间环境效应及新型有效载荷方面的研究

  • 中图分类号: TL99

Contrast of single-photon and two-photon absorption-induced charges in laser-simulated single event effects

Funds: National Key Laboratory foundation(6142910190110)
  • 摘要: 通过理论推导和模拟试验,研究了单光子和双光子吸收分别占主导时,脉冲激光模拟试验中电荷收集效率之间的定量关系。分析不同光学参数对模拟试验中电离电荷浓度影响,确定具体激光波长、脉宽、能量及束斑等参数。根据脉冲激光在硅中单光子线性吸收和双光子非线性吸收的特点,推导单光子与双光子吸收产生电荷量比值的定量公式。通过1064 nm和1200 nm波长激光的验证试验,发现了响应脉冲及产生电荷量与脉冲激光能量或能量平方具有良好的线性关系,且在单光子吸收和双光子吸收各自占主导时,单光子吸收产生电荷率明显高于双光子吸收,证明了两种波长激光产生电荷量的比值近似等于公式计算结果。结果表明,1200 nm脉冲激光 1 nJ2 诱导电荷量等同于1064 nm脉冲激光 0.039 nJ诱导电荷量。
  • 图  1  单光子和双光子吸收示意图

    Figure  1.  Diagram of single- and two-photon absorption

    图  2  SPA和TPA产生的电荷径迹分布图

    Figure  2.  Charge tracks generated by SPA and TPA

    图  3  LM741 CH运算放大器

    Figure  3.  LM741 CH operational amplifier

    图  4  1064 nm脉冲激光能量变化对LM741 CH运算放大器响应电压的影响

    Figure  4.  Influence of 1064 nm pulse laser energy variation on response voltage of LM741 CH operational amplifier

    图  5  1200 nm脉冲激光能量变化对LM741 CH运算放大器响应电压的影响

    Figure  5.  Influence of 1200 nm pulse laser energy variation on response voltage of LM741 CH operational amplifier

    图  6  单光子(双光子)电压响应与能量(能量平方)线性关系拟合图

    Figure  6.  Fitting diagram of linear relationship between single-photon (two-photon) voltage response and energy (energy square)

    图  7  单光子(双光子)电荷量与能量(能量平方)线性关系拟合图

    Figure  7.  Fitting diagram of linear relation between charge amount of single-photon (two-photon) and energy (energy square)

  • [1] Heidel D F, Marshall P W, Pellish J A, et al. Single-event upsets and multiple-bit upsets on a 45 nm SOI SRAM [J]. IEEE Transactions on Nuclear Science, 2009, 56(6): 3499-3504. doi:  10.1109/TNS.2009.2033796
    [2] Hales J M, Khachatrian A, Roche N J H, et al. Simulation of laser-based two-photon absorption induced charge carrier generation in silicon [J]. IEEE Transactions on Nuclear Science, 2015, 62(4): 1550-1557. doi:  10.1109/TNS.2015.2422793
    [3] Xapsos M A. Applicability of LET to single events in microelectronic structures [J]. IEEE Transactions on Nuclear Science, 1992, 39(6): 1613-1621. doi:  10.1109/23.211343
    [4] Moss S C, LaLumondiere S D, Scarpulla J R, et al. Correlation of picosecond laser-induced latchup and energetic particle-induced latchup in CMOS test structures [J]. IEEE Transactions on Nuclear Science, 1995, 42(6): 1948-1956. doi:  10.1109/23.489239
    [5] Chen D, Kim H, Phan A, et al. Single-event effect performance of a commercial embedded ReRAM [J]. IEEE Transactions on Nuclear Science, 2014, 61(6): 3088-3094. doi:  10.1109/TNS.2014.2361488
    [6] Ferlet-Cavrois V, Pouget V, McMorrow D, et al. Investigation of the propagation induced pulse broadening (PIPB) effect on single event transients in SOI and bulk inverter chains [J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 2842-2853. doi:  10.1109/TNS.2008.2007724
    [7] Melinger J S, Buchner S, McMorrow D, et al. Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies [J]. IEEE Transactions on Nuclear Science, 1994, 41(6): 2574-2584. doi:  10.1109/23.340618
    [8] McMorrow D, Lotshaw W T, Melinger J S, et al. Subbandgap laser-induced single event effects: Carrier generation via two-photon absorption [J]. IEEE Transactions on Nuclear Science, 2002, 49(6): 3002-3008. doi:  10.1109/TNS.2002.805337
    [9] Johnston A H. Charge generation and collection in pn junctions excited with pulsed infrared lasers [J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1694-1702. doi:  10.1109/23.273491
    [10] Loveless T D, Massengill L W, Bhuva B L, et al. A single-event-hardened phase-locked loop fabricated in 130 nm CMOS [J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2012-2020. doi:  10.1109/TNS.2007.908166
    [11] Ranka J K, Gaeta A L, Baltuska A, et al. Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode [J]. Optics Letters, 1997, 22(17): 1344-1346. doi:  10.1364/OL.22.001344
    [12] Kikuchi K. Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber [J]. Electronics Letters, 1998, 34(1): 123-125. doi:  10.1049/el:19980008
    [13] McMorrow D, Buchner S, Lotshaw W T, et al. Demonstration of single-event effects induced by through-wafer two-photon absorption [J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3553-3557. doi:  10.1109/TNS.2004.839106
    [14] Schwank J R, Shaneyfelt M R, Dodd P E, et al. Comparison of single and two-photon absorption for laser characterization of single-event upsets in SOI SRAMs [J]. IEEE Transactions on Nuclear Science, 2011, 58(6): 2968-2975. doi:  10.1109/TNS.2011.2171006
    [15] Hales J M, Roche N J H, Khachatrian A, et al. Strong correlation between experiment and simulation for two-photon absorption induced carrier generation [J]. IEEE Transactions on Nuclear Science, 2017, 64(5): 1133-1136. doi:  10.1109/TNS.2017.2686010
    [16] Hales J M, Roche N J H, Khachatrian A, et al. Two-photon absorption induced single-event effects: Correlation between experiment and simulation [J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 2867-2873. doi:  10.1109/TNS.2015.2489465
    [17] Buchner S, McMorrow D, Melinger J, et al. Laboratory tests for single-event effects [J]. IEEE Transactions on Nuclear Science, 1996, 43(2): 678-686. doi:  10.1109/23.490911
  • [1] 崔大健, 敖天宏, 奚水清, 张承, 高若尧, 袁俊翔, 雷勇.  InGaAs单光子雪崩焦平面研究进展(特邀) . 红外与激光工程, 2023, 52(3): 20230016-1-20230016-11. doi: 10.3788/IRLA20230016
    [2] 史衍丽, 李云雪, 白容, 刘辰, 叶海峰, 黄润宇, 侯泽鹏, 马旭, 赵伟林, 张家鑫, 王伟, 付全.  短波红外单光子探测器的发展(特邀) . 红外与激光工程, 2023, 52(3): 20220908-1-20220908-16. doi: 10.3788/IRLA20220908
    [3] 王晓凤, 刘萌, 于宇, 王雨雷, 张勇, 夏元钦, 赵培德.  基于量子阻抗Lorentz振子的含芴二茂铁衍生物双、三光子吸收 . 红外与激光工程, 2023, 52(12): 20230410-1-20230410-12. doi: 10.3788/IRLA20230410
    [4] 杨杰, 王才喜, 乔凯, 唐勐, 靳辰飞.  基于时间相关单光子计数技术的测速研究 . 红外与激光工程, 2022, 51(10): 20220565-1-20220565-8. doi: 10.3788/IRLA20220565
    [5] 李致廷, 刘长明, 王与烨, 常继英, 陈锴, 李吉宁, 钟凯, 徐德刚, 姚建铨.  基于单光子探测的目标光学散射特性研究 . 红外与激光工程, 2022, 51(9): 20210825-1-20210825-8. doi: 10.3788/IRLA20210825
    [6] 史衍丽, 朱泓遐, 杨雪艳, 曾辉, 李再波, 刘辰, 王建, 王伟.  InP基自由运行模式单光子APD . 红外与激光工程, 2020, 49(1): 0103005-0103005(8). doi: 10.3788/IRLA202049.0103005
    [7] 顾兵, 胡月球, 闻博.  矢量光场激发三阶非线性光学效应的研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201050-1-20201050-13. doi: 10.3788/IRLA20201050
    [8] 安恒, 李得天, 文轩, 张晨光, 王鷁, 马奎安, 李存惠, 薛玉雄, 杨生胜, 曹洲.  高速PWM单粒子瞬态效应脉冲激光模拟试验研究 . 红外与激光工程, 2020, 49(8): 20190533-1-20190533-7. doi: 10.3788/IRLA20190533
    [9] 安恒, 张晨光, 杨生胜, 薛玉雄, 王光毅, 王俊.  SiGeBiCMOS线性器件脉冲激光单粒子瞬态效应研究 . 红外与激光工程, 2019, 48(3): 320001-0320001(7). doi: 10.3788/IRLA201948.0320001
    [10] 尤立星.  超导纳米线单光子探测现状与展望 . 红外与激光工程, 2018, 47(12): 1202001-1202001(6). doi: 10.3788/IRLA201847.1202001
    [11] 柴志军, 高亚臣.  CdS0.2Se0.8纳米晶掺杂玻璃的超快非线性吸收特性 . 红外与激光工程, 2017, 46(3): 321004-0321004(5). doi: 10.3788/IRLA201746.0321004
    [12] 沈姗姗, 陈钱, 何伟基, 周萍, 顾国华.  单光子测距系统性能优化研究和实现 . 红外与激光工程, 2016, 45(2): 217001-0217001(6). doi: 10.3788/IRLA201645.0217001
    [13] 安永泉, 王志斌, 李晋华, 王召巴.  基于O2 吸收特性单站被动测距机理研究 . 红外与激光工程, 2015, 44(1): 310-316.
    [14] 李文胜, 张琴, 黄海铭, 付艳华.  一维含单负材料光子晶体塔姆态的偏振特征 . 红外与激光工程, 2014, 43(5): 1600-1604.
    [15] 邵士勇, 梅海平, 黄印博, 饶瑞中.  大气气溶胶等效吸收的研究 . 红外与激光工程, 2014, 43(4): 1057-1061.
    [16] 刘骋昊, 陈云飞, 何伟基, 顾国华, 陈钱.  单光子测距系统仿真及精度分析 . 红外与激光工程, 2014, 43(2): 382-387.
    [17] 黄振, 蒋远大, 孙志斌, 郑福, 王超, 翟光杰.  近红外单光子读取电路 . 红外与激光工程, 2014, 43(2): 464-468.
    [18] 左娅妮, 李政勇, 杨峥, 刘未华, 陈长权, 吴家盛.  基于硅雪崩光电二极管的双光子吸收实验 . 红外与激光工程, 2014, 43(12): 3928-3931.
    [19] 李文胜, 黄海铭, 付艳华, 张琴, 是度芳.  含单负材料对称型一维光子晶体隧穿模的特性 . 红外与激光工程, 2012, 41(1): 69-72.
    [20] 李文胜, 张琴, 黄海铭, 付艳华, 是度芳.  含单负材料光子晶体隧穿模的偏振特性 . 红外与激光工程, 2012, 41(8): 2033-2037.
  • 加载中
图(7)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  50
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-11
  • 修回日期:  2022-01-24
  • 录用日期:  2022-02-10
  • 刊出日期:  2022-09-28

激光模拟单粒子效应中单光子与双光子吸收诱导电荷量对比

doi: 10.3788/IRLA20210954
    作者简介:

    张晨光,男,工程师,主要从事空间环境效应及新型有效载荷方面的研究

基金项目:  空间环境材料行为及评价技术国防科技重点实验室基金(6142910190110)
  • 中图分类号: TL99

摘要: 通过理论推导和模拟试验,研究了单光子和双光子吸收分别占主导时,脉冲激光模拟试验中电荷收集效率之间的定量关系。分析不同光学参数对模拟试验中电离电荷浓度影响,确定具体激光波长、脉宽、能量及束斑等参数。根据脉冲激光在硅中单光子线性吸收和双光子非线性吸收的特点,推导单光子与双光子吸收产生电荷量比值的定量公式。通过1064 nm和1200 nm波长激光的验证试验,发现了响应脉冲及产生电荷量与脉冲激光能量或能量平方具有良好的线性关系,且在单光子吸收和双光子吸收各自占主导时,单光子吸收产生电荷率明显高于双光子吸收,证明了两种波长激光产生电荷量的比值近似等于公式计算结果。结果表明,1200 nm脉冲激光 1 nJ2 诱导电荷量等同于1064 nm脉冲激光 0.039 nJ诱导电荷量。

English Abstract

    • 众所周知,高能粒子穿过器件时,会沿电离径迹产生高密度的电子—空穴对,敏感节点通过吸收径迹上大量的电荷引发单粒子效应(single event effect),同时电离径迹上电荷的分布取决于器件材料、粒子种类、粒子能量及LET值。随着半导体工艺的提升,晶体管尺寸进一步缩小,敏感节点引发单粒子效应所需的电荷量随之减少,甚至在45 nm SOI SRAM 器件中,LET值为0.9 MeV/cm2·mg的低能质子通过核反应也会引起单粒子翻转 [1]。这些变化对集成电路抗单粒子设计提出新的要求,如测试电路单粒子敏感性,确定单粒子效应阈值等。同时宇航器件商业化的趋势进一步扩展了商用器件对单粒子效应测试的需求,在这方面,脉冲激光模拟方法提供了一种快捷经济的试验手段。

      脉冲激光测试系统,一般激光束聚焦光斑尺寸在2 μm左右,所产生的电离径迹径向距离远大于重离子的电离径迹。因此在小于1 ps的电离响应时间内,重离子电离径迹上的电荷密度远高于激光脉冲,但随着重离子电离径迹上漏斗效应和俄歇复合相互作用,10 ps后重离子和脉冲激光电离径迹上的电荷浓度趋于相同[2-3],因此不同的电离径迹造成电荷浓度分布的差异正是激光模拟单粒子的难点。虽然研究表明,脉冲激光模拟单粒子效应中单光子吸收(single-photonabsorption, SPA)和双光子吸收( two-photon absorption, TPA)都可以定量表征重离子在器件中引起的单粒子效应[4-6],但不同的脉冲激光模拟方式,同样会引起不同电离径迹带来的电荷浓度分布差异,目前这方面还没有相关研究的工作报道。有鉴于此,定量地将单光子吸收电荷收集量与双光子吸收电荷收集量进行理论与试验对比分析,有一定的理论及应用价值。

    • 半导体器件在激光辐照下,通过光电效应、康普顿散射和电子对效应发生电离。如果光子能量(hv)大于半导体带隙能量(Eg),激光脉冲会在半导体材料中引起线性单光子吸收,产生高密度的电子和空穴,但如果光子的能量较低hvEg<2hv,此时一个光子能量不足以让一个电子完成带隙间的能量跃迁,但通过聚焦增加激光的光强,有较大的概率通过瞬时吸收两个光子可产生一个电子-空穴对,如图1所示。通过增加光强(或每秒入射到材料上的光子数量)可以增加双光子吸收的概率,因此双光子吸收是非线性的[7-8]。对于大多数半导体来说,电离能介于一个电子伏特(窄带隙半导体)至几个电子伏特(宽带隙半导体)之间。对于硅来说,带隙能量为1.12 eV,因此,单光子吸收激光波长必须小于1.10 µm,双光子吸收激光波长在1.104~2.208 µm之间。

      图  1  单光子和双光子吸收示意图

      Figure 1.  Diagram of single- and two-photon absorption

    • 激光光束在硅中按照高斯分布,纵向剖面如图2所示。激光束半径$ {r}^{2}\left(z\right) $由下式给出:

      图  2  SPA和TPA产生的电荷径迹分布图

      Figure 2.  Charge tracks generated by SPA and TPA

      $$ {r}^{2}\left(z\right)={{r}_{0}}^{2}\left[ {1+{\left(\dfrac{\lambda \mathrm{z}}{\pi {{r}_{0}}^{2}n}\right)}^{2}} \right] $$ (1)

      式中:z为在器件中的传播深度;$ {r}_{0} $为激光束的束腰斑半径;λ为波长。激光束半径是影响双光子吸收电荷浓度分布的重要因素,光束半径越小,双光子吸收系数越大。

      ${\textit{z}}_{0}$为共焦长度,代表束斑直径扩散到表面聚焦束斑$ \sqrt{2} $倍时的穿透深度[9]。入射深度大于共焦长度后,笔者一般认为脉冲激光束开始发散。

      $$ {\textit{z}}_{0}=\text{π}n\dfrac{{{\omega }_{0}}^{2}}{\lambda } $$ (2)

      图2所示,分别表示SPA和TPA产生的电荷径迹。单光子吸收时,激光束直径随着入射深度的扩大,在入射深度等于共焦长度的时候电荷密度减小了2倍。而双光子吸收需要足够的光强,因此,电离电荷集中在聚焦点附近。

    • 激光在硅中传播,线性吸收系数会因光载流子和晶格的光吸收而变化。在较高的激光强度下,双光子吸收速率也增加,相应的吸收系数随辐射强度的变化而变化[10]。对于均匀入射光束,这种效应可以用非线性方程来描述。光的吸收过程由以下等式决定:

      $$ \frac{\mathrm{d}{I}(r,{\textit{z}})}{\mathrm{d}z}=-{\mathrm{\alpha }}_{\mathrm{\lambda }}{I}\left(r,{\textit{z}}\right)-\mathrm{\sigma }{N}{I}\left(r,{\textit{z}}\right)-{\mathrm{\beta }}_{\mathrm{\lambda }}{I}{(r,{\textit{z}})}^{2} $$ (3)

      式中:${I}\left(r,{\textit{z}}\right)$为半导体中的激光强度;$ \mathrm{\sigma } $为自由载流子吸收横截面;N为自由载流子密度;$ \mathrm{\alpha } $为单光子吸收系数;$ {\mathrm{\beta }}_{\mathrm{\lambda }} $为双光子吸收系数[11-12],求解方程得激光光强随辐照深度的函数:

      $$ {{I}}_{a}\left(x\right)={{I}}_{a}\left(0\right)\frac{\mathrm{e}\mathrm{x}\mathrm{p}(-\mathrm{\alpha }x)}{1+\left(\dfrac{{{\beta }}_{{\lambda }}{{I}}_{a}\left(0\right)}{\mathrm{\alpha }}\right)[1-\mathrm{e}\mathrm{x}\mathrm{p}(-\mathrm{\alpha }x\left)\right]} $$ (4)

      式中:${{I}}_{a}\left(x\right)$${{I}}_{a}\left(0\right)$分别为内部和表面的激光强度,由于光的产生与基本吸收有关,所以电子-空穴对的产生速率为:

      $$ {G}\left(x\right)=\frac{\mathrm{\alpha }{{I}}_{a}\left(x\right)}{{h}{v}}+\frac{{{\beta }}_{\mathrm{\lambda }}{{I}}_{a}^{2}\left(x\right)}{2{h}{v}} $$ (5)

      从公式(5)可以看出,当双光子吸收占主导地位时,因产生电子空穴对需要消耗两个光子,产生的电荷效率相比单光子吸收更低。当用1.064 µm的脉冲激光辐射硅时,$ {\mathrm{\beta }}_{\mathrm{\lambda }} $为3×10−8 cm·W−1$ \mathrm{\alpha } $为10 cm−1,此时双光子吸收的相对贡献小于10%。因此,1.064 μm波长激光在模拟中,双光子吸收都可以忽略不计。

    • 载流子密度在带隙重整化和Burstein-Moss(B-M)漂移效应的相互作用下影响带隙能变化。在高掺杂器件中,带隙重整化能减小带隙,而B-M漂移却能增加带隙。在硅材料中,带隙重整化和B-M漂移的相互耦合作用减小了带隙,从而导致吸收系数增大。研究表明:脉冲激光波长为1064 nm左右时,吸收系数随掺杂浓度的增加变化较大,由此说明激光波长接近带隙能量时,吸收系数随掺杂浓度的变化较大[13]。所以当使用光子能量远大于带隙能量的激光波长时,吸收系数随掺杂浓度变化可以忽略。

    • 载流子密度很高时,光子可以被自由载流子吸收。当光子频率和等离子体频率近似时,这种效应更明显[14-15]。等离子体频率的计算公式为:

      $$ {\mathrm{\omega }}_{p}^{2}=\frac{{{N}{e}}^{2}}{{m}^{*}{\varepsilon }_{0}{\varepsilon }_{\rm r}} $$ (6)

      式中:$ {m}^{*} $为空穴有效质量;e为电子电荷;${\varepsilon }_{0}$为真空介电常数;${\varepsilon }_{\rm r}$为相对介电常数。对于硅而言,载流子密度为1019 cm−3,有效质量为0.15 m0(m0是电子静止质量),相对介电常数为10,得到等离子体密度为1014 s−1。这个频率低于器件测试应用的典型的激光频率3×1014~5×1014 s−1,因此,自由载流子吸收可以被忽略[16-17]

    • 根据笔者之前的研究,通过选择合适的激光波长与能量可以忽略带隙变窄效应与自由载流子吸收的影响。根据能量的线性和非线性吸收特性,获得SPA及TPA等效重离子LET值计算公式为:

      $$ {LET}_{\mathrm{S}\mathrm{P}{{\rm{A}}}}=(1-{R})\frac{{E}_{\mathrm{i}\mathrm{o}\mathrm{n}}(1-\mathrm{e}\mathrm{x}\mathrm{p}(-\mathrm{\alpha }h))}{{A} \cdot {E}_{\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}} \cdot h \cdot \mathrm{ }\mathrm{\rho }}{E}_{0} $$ (7)
      $$ \begin{split} &{LET}_{\mathrm{T}\mathrm{P}\mathrm{A}}=\left(1-{R}\right)\dfrac{{E}_{\mathrm{i}\mathrm{o}\mathrm{n}} \cdot {E}_{0}\left( {1-\dfrac{1}{1+{\mathrm{\beta }}_{\mathrm{\lambda }}h\dfrac{{E}_{0}}{\omega \sigma }}} \right)}{{A} \cdot {2E}_{\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}} \cdot h \cdot \mathrm{\rho }}=\\ &\left(1-{R}\right)\dfrac{{E}_{\mathrm{i}\mathrm{o}\mathrm{n}}{\mathrm{\beta }}_{\mathrm{\lambda }}h}{{A} \cdot {2E}_{\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}} \cdot h \cdot \mathrm{\rho }(\omega \sigma +{\mathrm{\beta }}_{\mathrm{\lambda }}h{E}_{0})}{{E}_{0}}^{2} \end{split}$$ (8)

      式中:$ {E}_{\mathrm{i}\mathrm{o}\mathrm{n}} $为重离子使材料电离的能量;$ \mathrm{\rho } $为材料密度;$ {E}_{\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}} $为脉冲激光使材料电离的能量;A=1.6×10−13h为敏感体积厚度;R为反射率。则脉冲激光诱导产生相同电荷所需SPA能量${{E}}_{\mathrm{S}}$和TPA能量${{E}}_{\mathrm{T}}$的比值为:

      $$ \begin{split} &\dfrac{{E}_{\mathrm{i}\mathrm{o}\mathrm{n}}{\mathrm{\beta }}_{\mathrm{\lambda }}h}{{A} \cdot {2E}_{\mathrm{T}\mathrm{P}\mathrm{A}} \cdot {h} \cdot \mathrm{\rho }(\omega \sigma +{\mathrm{\beta }}_{\mathrm{\lambda }}h{E}_{\mathrm{T}})}{{E}_{\mathrm{T}}}^{2}=\\ &\dfrac{{E}_{\mathrm{i}\mathrm{o}\mathrm{n}}(1-\mathrm{e}\mathrm{x}\mathrm{p}(-\mathrm{\alpha }h))}{{A} \cdot {E}_{\mathrm{S}\mathrm{P}\mathrm{A}} \cdot h \cdot \mathrm{\rho }}{E}_{\mathrm{S}} \end{split}$$ (9)
      $$ \frac{{E}_{\mathrm{S}}}{{{E}_{\mathrm{T}}}^{2}}=\frac{{\mathrm{\beta }}_{\mathrm{\lambda }}h{E}_{\mathrm{S}\mathrm{P}\mathrm{A}}}{2{E}_{\mathrm{T}\mathrm{P}\mathrm{A}}(\omega \sigma +{\mathrm{\beta }}_{\mathrm{\lambda }}h{E}_{\mathrm{T}})(1-\mathrm{e}\mathrm{x}\mathrm{p}(-\mathrm{\alpha }h))} $$ (10)

      式中:${{E}}_{\mathrm{S}\mathrm{P}\mathrm{A}}$为单光子吸收试验中脉冲激光的光子能量;${{E}}_{\mathrm{T}\mathrm{P}\mathrm{A}}$为双光子吸收试验中脉冲激光的光子能量。从公式(10)可以看出,SPA激光能量和TPA激光能量的平方都与激光诱导产生的电荷量具有线性关系,当激光参数一定时,理论上SPA诱导产生电荷量与TPA诱导产生电荷量存在相互关联。

    • 试验选取LM741 CH运算放大器如图3所示,是一种应用非常广泛的通用型运算放大器。

      图  3  LM741 CH运算放大器

      Figure 3.  LM741 CH operational amplifier

      使用−1.5 V输入电压,并且使用示波器监测输出信号的改变,选择正面辐照方式,100倍物镜,选取1064 nm波长、1.6 μm光斑的脉冲激光进行单光子诱导单粒子效应试验,选取1200 nm波长、1.9 μm光斑的脉冲激光进行双光子诱导单粒子效应试验,使用螺旋扫描确定器件的敏感区域,之后将激光器对准器件的敏感区域,再逐渐增加脉冲激光能量,两个试验在同一个敏感点进行,且保持Z轴距离不变,在尽可能相同的试验条件下,对比单光子与双光子吸收模拟试验的不同响应。

      图45所示,脉冲激光模拟单粒子效应试验中,电荷沉积剖面有很强的依赖性。瞬态脉冲可以是正,也可以是负,这取决于器件中电荷的分布。而单光子吸收和双光子吸收有着不同的电荷分布方式,造成了正负脉冲的差异。振幅和脉冲宽度随着能量的增大而增大,同时单光子吸收脉冲响应时间更长,可达到20 μs。

      图  4  1064 nm脉冲激光能量变化对LM741 CH运算放大器响应电压的影响

      Figure 4.  Influence of 1064 nm pulse laser energy variation on response voltage of LM741 CH operational amplifier

      图  5  1200 nm脉冲激光能量变化对LM741 CH运算放大器响应电压的影响

      Figure 5.  Influence of 1200 nm pulse laser energy variation on response voltage of LM741 CH operational amplifier

      为了定量比较双、单光子吸收的脉冲响应结果,将两者的激光能量的平方与电荷量关联起来。在单光子吸收试验中,激光波长和光斑大小会影响能量与电荷产生。而对于双光子吸收,激光波长、光斑大小、脉冲宽度都会影响能量与电荷产生,其中更小的光斑尺寸会增大激光强度,从而增大双光子吸收概率,增大电荷的产生。基于此,非线性光学试验很难定量地进行。这里笔者通过固定的脉冲激光参数来确定双、单光子吸收脉冲激光模拟中的定量关系。

      通过拟合脉冲幅值与能量或能量平方的关系,如图6所示,会发现,在双、单光子吸收试验中,随着能量或能量平方的增大,与脉冲幅值呈现良好的线性关系,这说明LM741 CH运算放大器双、单光子吸收产生电荷量之间存在一定的定量关系。通过公式(10),可以看到拥有相同电荷产生能力(LET值)的双、单光子吸收,能量与能量平方的比值是一个近似的定值,其中双光子吸收的能量会对比值有微量的影响,但${\;{\beta }}_{\mathrm{\lambda }}{h}{{E}}_{\mathrm{T}}$$ \mathrm{\omega }\mathrm{\sigma } $相比,相差三个数量级,因此可以忽略能量的影响。把激光参数代入公式(10),得到:$ {{{E}}_{\mathrm{S}}/{{E}}_{\mathrm{T}}}^{2}= 0.043 $

      图  6  单光子(双光子)电压响应与能量(能量平方)线性关系拟合图

      Figure 6.  Fitting diagram of linear relationship between single-photon (two-photon) voltage response and energy (energy square)

      脉冲幅值与运算放大器中产生电荷成正比,因此笔者用半高宽和对应幅值的乘积表征双、单光子吸收中生成的电荷总量,再与对应的能量或能量平方进行关联。

      通过拟合电荷量与能量或能量平方的关系,如图7所示,在双、单光子吸收试验中,电荷量随能量或能量平方的变化呈现线性规律,并且单光子吸收电荷生成率明显高于双光子吸收,笔者用拟合得到的拟合直线斜率的比值来表示双、单光子吸收电荷量之间的定量关系。

      图  7  单光子(双光子)电荷量与能量(能量平方)线性关系拟合图

      Figure 7.  Fitting diagram of linear relation between charge amount of single-photon (two-photon) and energy (energy square)

      $$ \frac{{{K}}_{\mathrm{T}\mathrm{P}\mathrm{A}}}{{{K}}_{\mathrm{S}\mathrm{P}\mathrm{A}}}=\frac{0.285\;55}{7.301\;53}=0.039\cong 0.043=\frac{{{E}}_{\mathrm{S}}}{{{{E}}_{\mathrm{T}}}^{2}} $$ (11)

      可以看到,计算结果近似,因此,在双、单光子吸收试验中,电荷量之间存在着定量关系。即1 nJ2 1200 nm波长脉冲激光在LM741 CH运算放大器中产生的电荷量,等同于0.039 nJ 1 064 nm波长脉冲激光产生的电荷量。理论计算数据大于试验数据,其原因在于经过器件金属布线层反射的脉冲激光再次入射器件敏感区域,此时双光子吸收脉冲反射激光无法聚焦,没有足够的光强来产生新的光致电离电荷,而单光子吸收脉冲反射激光经过光致电离产生新的电荷,导致${E}_{{\rm{S}}}$${{{E}}_{\mathrm{T}}}^{2}$比值在试验中变小。

    • 笔者采用1064 nm脉冲激光单光子吸收诱导单粒子效应和1200 nm脉冲激光双光子吸收诱导单粒子效应两种模拟方法,定量比较了LM741 CH运算放大器中激光辐照的电荷收集量。试验结果与推导公式计算结果基本吻合,确定了LM741 CH运算放大器中单、双光子吸收诱导电荷收集量的定量关系,即1200 nm脉冲激光 1 nJ2 诱导电荷量等同于1064 nm脉冲激光 0.039 nJ诱导电荷量。不同波长的脉冲激光,因为光子能量、光强、脉宽的不同,导致光致电离的能力与机理都会有不同。所以在脉冲激光模拟试验中,对不同波长及参数的脉冲激光产生诱导电荷的定量比较分析,有助于进一步研究双、单光子吸收脉冲激光模拟试验中器件单粒子效应翻转截面的差异性,这方面有待进一步研究。

参考文献 (17)

目录

    /

    返回文章
    返回