留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于皮秒激光诱导击穿光谱技术的镓酸锌薄膜的快速定量分析研究

董丽丽 高晴 吴家森 夏祥宇 刘世明 修俊山

董丽丽, 高晴, 吴家森, 夏祥宇, 刘世明, 修俊山. 基于皮秒激光诱导击穿光谱技术的镓酸锌薄膜的快速定量分析研究[J]. 红外与激光工程, 2023, 52(3): 20220470. doi: 10.3788/IRLA20220470
引用本文: 董丽丽, 高晴, 吴家森, 夏祥宇, 刘世明, 修俊山. 基于皮秒激光诱导击穿光谱技术的镓酸锌薄膜的快速定量分析研究[J]. 红外与激光工程, 2023, 52(3): 20220470. doi: 10.3788/IRLA20220470
Dong Lili, Gao Qing, Wu Jiasen, Xia Xiangyu, Liu Shiming, Xiu Junshan. Rapid quantitative analysis of ZnGa2O4(GZO) thin films using picosecond laser induced breakdown spectroscopy[J]. Infrared and Laser Engineering, 2023, 52(3): 20220470. doi: 10.3788/IRLA20220470
Citation: Dong Lili, Gao Qing, Wu Jiasen, Xia Xiangyu, Liu Shiming, Xiu Junshan. Rapid quantitative analysis of ZnGa2O4(GZO) thin films using picosecond laser induced breakdown spectroscopy[J]. Infrared and Laser Engineering, 2023, 52(3): 20220470. doi: 10.3788/IRLA20220470

基于皮秒激光诱导击穿光谱技术的镓酸锌薄膜的快速定量分析研究

doi: 10.3788/IRLA20220470
基金项目: 国家自然科学基金(11704228);山东省自然科学基金(ZR2022MA044,ZR2016AQ22)
详细信息
    作者简介:

    董丽丽,女,实验师,硕士,主要从事薄膜材料制备及表征方面的研究

    通讯作者: 修俊山,男,副教授,博士,主要从事激光光谱探测及光电传感器方面的研究
  • 中图分类号: O433.4

Rapid quantitative analysis of ZnGa2O4(GZO) thin films using picosecond laser induced breakdown spectroscopy

Funds: National Science Founding of China (1704228); Shandong Provincial Natural Science Foundation (ZR2022MA044, ZR2016AQ22)
  • 摘要: 采用射频磁控溅射方法在不同的溅射功率下制备了掺杂Ga元素的ZnO透明导电薄膜材料(ZnGa2O4, GZO),在GZO薄膜的制备过程中,溅射功率会对样品的组分配比产生影响,从而导致GZO薄膜的性能产生差异。文中利用皮秒激光诱导击穿光谱技术(PS-LIBS)对GZO薄膜进行了微烧蚀分析,对GZO薄膜的关键元素浓度比进行了快速定量分析研究。结果表明GZO薄膜的光学性能与元素谱线强度比之间存在一定的联系,随着溅射功率的增加,Zn/Ga的谱线强度比值与浓度比呈现出一致的变化,Ga元素的含量与样品的禁带宽度变化一致。同时,使用玻耳兹曼斜线法与斯塔克展宽法对等离子体温度与电子密度进行了计算。所有结果表明,PS-LIBS技术可以实现GZO薄膜关键组分配比的快速分析,为磁控溅射法制备GZO薄膜的工艺现场的快速性能分析、制备参数的实时优化提供了技术参考。
  • 图  1  不同溅射功率下GZO薄膜的透过率曲线

    Figure  1.  Transmittance of GZO films at different sputtering powers

    图  2  不同溅射功率下GZO薄膜的光学禁带宽度

    Figure  2.  Optical band gap widths of GZO films at different sputtering powers

    图  3  PS-LIBS 实验装置示意图

    Figure  3.  Schematic diagram of PS-LIBS experimental set up

    图  4  GZO薄膜的LIBS光谱图

    Figure  4.  Typical LIBS spectra of GZO thin films

    图  5  Ga元素谱线的玻耳兹曼图

    Figure  5.  Boltzmann diagram obtained from Ga lines

    图  6  谱线Ga I 403.29 nm的Voigt拟合图

    Figure  6.  Voigt fitting of Ga lines I 403.29 nm

    图  7  不同位置的谱线Ga I 403.29 nm的强度变化

    Figure  7.  Intensity variation of Ga lines I 403.29 nm at different positions

    图  8  不同溅射功率下GZO薄膜的Zn/Ga谱线强度比与原子浓度比

    Figure  8.  Zn/Ga spectral line intensity ratio and atomic concentration ratio of GZO films at different sputtering powers

    图  9  不同溅射功率下GZO薄膜的Zn/Ga的定标曲线

    Figure  9.  Zn/Ga calibration curves of GZO films at different sputtering powers

    表  1  不同溅射功率下GZO薄膜的EDS数据

    Table  1.   EDS data of GZO films at different sputtering powers

    Sputtering parametersAtomic concentration ratios
    Power/WZnGaOZn/Ga
    702.539.7887.690.259
    802.329.5888.090.242
    902.7311.6485.630.235
    952.9313.3283.740.220
    下载: 导出CSV

    表  2  目标元素的谱线

    Table  2.   Spectral lines of target elements

    ElementNumber of linesWavelength at the peak positions/nm
    Ga I3287.42, 294.36, 403.29
    Zn I3328.23, 330.26, 334.50
    下载: 导出CSV

    表  3  用于计算等离子体温度的Ga谱线数据

    Table  3.   Spectral lines data of Ga using to calculate the plasma temperature

    ElementsSpectral lines/nmAtomic spectral lines data
    Aki/s−1Ek/eVgk
    Ga I287.421.17×1084.31234
    294.364.02×1084.31312
    403.294.85×1073.07342
    下载: 导出CSV
  • [1] Guo H, Zhang K, Jia X, et al. Effect of ITO film deposition conditions on ITO and CdS films of semiconductor solar cells [J]. Optik, 2017(7), 140: 322-330. doi:  10.1016/j.ijleo.2017.04.068
    [2] Ferhati H, Djeffal F, Benhaya A. Optimized high-performance ITO/Ag/ITO multilayer transparent electrode deposited by RF magnetron sputtering [J]. Superlattices and Microstructures, 2019, 129(5): 176-184. doi:  10.1016/j.spmi.2019.03.027
    [3] Rezaie M N, Manavizadeh N, Abadi E M N, et al. Comparison study of transparent RF-sputtered ITO/AZO and ITO/ZnO bilayers for near UV-OLED applications [J]. Applied Surface Science, 2017, 392(1): 549-556. doi:  10.1016/j.apsusc.2016.09.080
    [4] Yu S, Li L, Lyu X, et al. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit [J]. Scientific Reports, 2016, 6(1): 1-8. doi:  10.1038/s41598-016-0001-8
    [5] Zhu B L, Liu F, Li K, et al. Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere [J]. Ceramics International, 2017, 43(13): 10288-10298. doi:  10.1016/j.ceramint.2017.05.058
    [6] Olson D H, Rost C M, Gaskins J T, et al. Size effects on the cross-plane thermal conductivity of transparent conducting indium tin oxide and fluorine tin oxide thin films [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 9(1): 51-57.
    [7] Yu J, Gao Y, Wang L, et al. Anti-reductive properties of AZO/FTO bilayered transparent conducting films [J]. Surface Engineering, 2020, 36(1): 1-5. doi:  10.1080/02670844.2017.1418712
    [8] Zhao B, Tang L, Wang B, et al. Optical and electrical characterization of gradient AZO thin film by magnetron sputtering [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(10): 10320-10324. doi:  10.1007/s10854-016-5115-z
    [9] Tseng S F. Investigation of post-annealing aluminum-doped zinc oxide (AZO) thin films by a graphene-based heater [J]. Applied Surface Science, 2018, 448: 163-167. doi:  10.1016/j.apsusc.2018.04.036
    [10] Sürücü Ö B. Characterization of GZO thin films fabricated by RF magnetron sputtering method and electrical properties of In/GZO/Si/Al diode [J]. Journal of Materials Science: Materials in Electronics, 2019, 30(21): 19270-19278. doi:  10.1007/s10854-019-02286-w
    [11] Tsay C Y, Hsu W T. Comparative studies on ultraviolet-light-derived photoresponse properties of ZnO, AZO, and GZO transparent semiconductor thin films [J]. Materials, 2017, 10(12): 1379. doi:  10.3390/ma10121379
    [12] Gudmundsson J T. Physics and technology of magnetron sputtering discharges [J]. Plasma Sources Science and Technology, 2020, 29(11): 113001. doi:  10.1088/1361-6595/abb7bd
    [13] Chang C H, Yang C B, Sung C C, et al. Structure and tribological behavior of (AlCrNbSiTiV) N film deposited using direct current magnetron sputtering and high power impulse magnetron sputtering [J]. Thin Solid Films, 2018, 668: 63-68. doi:  10.1016/j.tsf.2018.10.023
    [14] Billiet J, Dams R, Hoste J. Multielement thin film standards for XRF analysis [J]. X-Ray Spectrometry, 1980, 9(4): 206-211. doi:  10.1002/xrs.1300090412
    [15] Li F, Ge L, Tang Z, et al. Recent developments on XRF spectra evaluation [J]. Applied Spectroscopy Reviews, 2020, 55(4): 263-287. doi:  10.1080/05704928.2019.1580715
    [16] Habazaki H, Matsuo T, Konno H, et al. Analysis of anodic films on Nb and NbNx by glow discharge optical emission spectroscopy [J]. Surface and Interface Analysis, 2003, 35(7): 618-622.
    [17] Heikkilä I, Eggertson C, Randelius M, et al. First experiences on characterization of surface oxide films in powder particles by Glow Discharge Optical Emission Spectroscopy (GD-OES) [J]. Metal Powder Report, 2016, 71(4): 261-264. doi:  10.1016/j.mprp.2016.03.005
    [18] Jolivet L, Leprince M, Moncayo S, et al. Review of the recent advances and applications of LIBS-based imaging [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 151: 41-53. doi:  10.1016/j.sab.2018.11.008
    [19] Yang Y, Zhang L, Hao X, et al. Classification of iron ore based on machine learning and laser induced breakdown spectroscopy [J]. Infrared and Laser Engineering, 2021, 50(5): 20210219. (in Chinese)
    [20] Liu S, Gao Q, Dong L, et al. Picosecond laser ablation and depth profile of Cu (In, Ga) Se2 thin film layer [J]. Optics Communications, 2020, 462(5): 125369. doi:  10.1016/j.optcom.2020.125369
    [21] Xiu J, Liu S, Fu S, et al. Rapid qualitative and quantitative analysis of elemental composition of Cu (In, Ga) Se 2 thin films using laser-induced breakdown spectroscopy [J]. Applied Optics, 2019, 58(4): 1040-1047. doi:  10.1364/AO.58.001040
    [22] Liu S, Gao Q, Xiu J, et al. Rapid micro-analysis of Al-In-Sn-O thin film using laser induced breakdown spectroscopy with picosecond laser pulses [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 160(10): 105684. doi:  10.1016/j.sab.2019.105684
    [23] Gao Q, Liu S, Wu J, et al. Rapid quantitative analysis and optical properties of ZCTO thin films based on picosecond laser-induced breakdown spectroscopy [J]. Applied Physics B: Lasers and Optics, 2021, 127(12): 161)-168. doi:  10.1007/s00340-021-07714-6
    [24] Haacke G. New figure of merit for transparent conductors [J]. Journal of Applied Physics, 1976, 47(9): 4086-4089. doi:  10.1063/1.323240
    [25] Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors [J]. Journal of Crystal Growth, 2001, 225(2-4): 110-113. doi:  10.1016/S0022-0248(01)00830-2
    [26] Griem H R. Plasma Spectroscopy[M]. New York: McGraw-Hill, 1964.
  • [1] 李欣, 吕正一, 崔博伦, 张家铭, 刘紫莹, 黄荀, 赵天卓.  共轴变焦激光诱导击穿光谱定量分析 . 红外与激光工程, 2023, 52(12): 20230310-1-20230310-12. doi: 10.3788/IRLA20230310
    [2] 张楚蕙, 陆健, 张宏超, 高楼, 谢知健.  双脉冲激光诱导铝等离子体的双波长干涉诊断 . 红外与激光工程, 2022, 51(2): 20210892-1-20210892-7. doi: 10.3788/IRLA20210892
    [3] 张鹏飞, 周婷, 夏道华, 张立.  好奇号火星车ChemCam-LIBS 光谱数据的定量分析研究 . 红外与激光工程, 2022, 51(9): 20210962-1-20210962-10. doi: 10.3788/IRLA20210962
    [4] 李红莲, 王红宝, 康沙沙, 方立德, 李小亭.  基于背景扣除法消除土壤基底中Al元素干扰的LIBS实验研究 . 红外与激光工程, 2021, 50(1): 20200136-1-20200136-6. doi: 10.3788/IRLA20200136
    [5] 马维喆, 董美蓉, 黄泳如, 童琪, 韦丽萍, 陆继东.  激光诱导击穿光谱的飞灰碳含量定量分析方法 . 红外与激光工程, 2021, 50(9): 20200441-1-20200441-10. doi: 10.3788/IRLA20200441
    [6] 王金梅, 颜海英, 郑培超, 薛淑文.  激光诱导土壤等离子体光谱辐射实验参数优化 . 红外与激光工程, 2018, 47(12): 1206011-1206011(7). doi: 10.3788/IRLA201847.1206011
    [7] 刘翠玲, 赵琦, 孙晓荣, 邢瑞芯.  QuEChERS-拉曼光谱法测定黄瓜上的吡虫啉残留量 . 红外与激光工程, 2017, 46(11): 1123002-1123002(8). doi: 10.3788/IRLA201746.1123002
    [8] 刘洋, 时家明, 程立, 李志刚, 张继魁, 曾杰.  双层等离子体对6 GHz高功率微波防护实验 . 红外与激光工程, 2017, 46(9): 917008-0917008(5). doi: 10.3788/IRLA201746.0917008
    [9] 李雄威, 王哲, 刘汉强, 郭桦.  基于激光诱导击穿光谱的燃煤热值定量分析 . 红外与激光工程, 2017, 46(7): 734001-0734001(5). doi: 10.3788/IRLA201746.0734001
    [10] 常浩, 金星, 林正国.  真空环境下脉冲激光烧蚀等离子体羽流特性分析 . 红外与激光工程, 2016, 45(12): 1206014-1206014(6). doi: 10.3788/IRLA201645.1206014
    [11] 马欲飞, 何应, 于欣, 陈德应, 孙锐.  用于激光诱导等离子体点火技术的激光源研究进展 . 红外与激光工程, 2016, 45(11): 1136003-1136003(6). doi: 10.3788/IRLA201645.1136003
    [12] 李占锋, 王芮雯, 邓琥, 尚丽平.  黄连中Pb的激光诱导击穿光谱测量分析 . 红外与激光工程, 2016, 45(10): 1006003-1006003(5). doi: 10.3788/IRLA201645.1006003
    [13] 郭天太, 洪博, 潘增荣, 孔明.  改进的SVM在矿井气体定量分析中的应用 . 红外与激光工程, 2016, 45(6): 617011-0617011(8). doi: 10.3788/IRLA201645.0617011
    [14] 李文宏, 尚丽平, 武志翔, 王芮雯, 周强.  水泥中Al 和Fe 的激光诱导击穿光谱测量分析 . 红外与激光工程, 2015, 44(2): 508-512.
    [15] 陈金忠, 王敬, 李旭, 滕枫.  样品温度对激光诱导等离子体辐射强度的影响 . 红外与激光工程, 2015, 44(11): 3223-3228.
    [16] 赵小侠, 罗文峰, 王红英, 杨森林, 朱海燕, 李姝丽, 付福兴, 李院院.  基于LIBS 技术铝合金中铁元素的定量分析 . 红外与激光工程, 2015, 44(1): 96-101.
    [17] 陈世和, 陆继东, 董璇, 潘凤萍, 张曦, 姚顺春, 李军.  不同激光参数下煤粉颗粒流等离子体特性分析 . 红外与激光工程, 2014, 43(1): 113-118.
    [18] 杨智慧, 郭聚光, 佟惠原, 姜维维, 王肖珩.  平行光管杂散辐射对红外辐射定标影响的分析 . 红外与激光工程, 2014, 43(10): 3199-3204.
    [19] 任利兵, 杨宏雷, 尉昊赟, 李岩.  采用FTIR原理的多组分气体分析仪研制 . 红外与激光工程, 2013, 42(12): 3175-3179.
    [20] 陈金忠, 白津宁, 宋广聚, 孙江, 魏艳红.  激光诱导击穿光谱技术测定土壤中元素Cr和Pb . 红外与激光工程, 2013, 42(4): 947-950.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  31
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 修回日期:  2022-12-05
  • 刊出日期:  2023-03-25

基于皮秒激光诱导击穿光谱技术的镓酸锌薄膜的快速定量分析研究

doi: 10.3788/IRLA20220470
    作者简介:

    董丽丽,女,实验师,硕士,主要从事薄膜材料制备及表征方面的研究

    通讯作者: 修俊山,男,副教授,博士,主要从事激光光谱探测及光电传感器方面的研究
基金项目:  国家自然科学基金(11704228);山东省自然科学基金(ZR2022MA044,ZR2016AQ22)
  • 中图分类号: O433.4

摘要: 采用射频磁控溅射方法在不同的溅射功率下制备了掺杂Ga元素的ZnO透明导电薄膜材料(ZnGa2O4, GZO),在GZO薄膜的制备过程中,溅射功率会对样品的组分配比产生影响,从而导致GZO薄膜的性能产生差异。文中利用皮秒激光诱导击穿光谱技术(PS-LIBS)对GZO薄膜进行了微烧蚀分析,对GZO薄膜的关键元素浓度比进行了快速定量分析研究。结果表明GZO薄膜的光学性能与元素谱线强度比之间存在一定的联系,随着溅射功率的增加,Zn/Ga的谱线强度比值与浓度比呈现出一致的变化,Ga元素的含量与样品的禁带宽度变化一致。同时,使用玻耳兹曼斜线法与斯塔克展宽法对等离子体温度与电子密度进行了计算。所有结果表明,PS-LIBS技术可以实现GZO薄膜关键组分配比的快速分析,为磁控溅射法制备GZO薄膜的工艺现场的快速性能分析、制备参数的实时优化提供了技术参考。

English Abstract

    • 随着对于纳米材料研究的不断深入,纳米材料的重要性与先进性也日益凸显,对于一些结构新颖,性能独特的半导体纳米材料的研究正得到越来越广泛的关注。透明导电氧化物纳米薄膜由于具备良好的导电性、可见光范围内较高的透过率等特性,在平面显示器、液晶显示屏幕、薄膜太阳能电池等诸多领域都有广泛的应用。目前,较为常用的由锡掺杂氧化铟(ITO)薄膜[1-3]、氟掺杂SnO2导电薄膜(FTO)[4-6]、铝掺杂ZnO薄膜(AZO)[7-9]等。但是,它们在大量使用的同时也伴随着一些缺点,例如原料储存量少、不够环保、成本昂贵等等。因此,寻求它们的替代产品,一直是该领域的一个重要的研究方向。

      镓酸锌(ZnGa2O4,GZO)薄膜是通过ZnO薄膜掺杂Ga元素得到的,其性能接近传统的ITO薄膜[10-11],并且Ga元素可以提高其载流子浓度,获得宽禁带的新型透明导电薄膜材料。射频磁控溅射法作为一种工艺成熟的薄膜材料制备方法,由于其方法稳定、成膜质量较高等优点,已经被广泛地应用到科研以及工业领域[12-13]。此次实验使用射频磁控溅射的方法在不同的溅射功率下沉积制备GZO薄膜样品,在GZO薄膜材料的制备过程中,溅射工艺参数的变化往往会使其组分配比产生差异,导致样品的性能不同。因此需要对制备得到的GZO薄膜进行快速的组分配比分析,从而对样品的性能进行分析,优化溅射的工艺参数。

      目前,常用的一些分析测试手段有X射线荧光分析法[14-15]、辉光放电发射光谱法[16-17]等,虽然在材料的元素分析领域都有着较为广泛的应用,但是这些方法的测试过程复杂繁琐,测试时间比较长。对于GZO纳米薄膜的快速、实时、微损伤分析要求都或多或少的存在一定的差距。

      激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy, LIBS)技术是一种非常具备潜力的实时、原位成分分析技术[18]。该技术不需要对检测样品进行复杂的预处理过程,同时能够实现多种元素的分析。LIBS技术具备的一系列优势让它在多个领域都有广泛的应用, 其中机器学习结合LIBS技术是目前研究的热点[19]。前期工作中,对于皮秒激光诱导击穿光谱(Picosecond Laser Induced Breakdown Spectroscopy, PS-LIBS)技术在纳米薄膜材料领域的应用已经进行了大量的研究,使用LIBS技术对铜铟镓硒薄膜进行了微损伤快速定量分析[20-21],对于Al-In-Sn-O薄膜也进行了关键元素含量的定量分析研究[22],同时利用PS-LIBS技术实现了ZCTO薄膜的膜厚估测和定量分析[23]。文中使用PS-LIBS技术对GZO薄膜进行快速定量分析,进一步完善该技术在纳米薄膜材料领域的应用。

    • 此次实验使用的不同溅射功率的镓酸锌薄膜样品是通过射频磁控溅射的方法制备得到的,仪器选用的是JGP500 C2 型高真空多层膜磁控溅射系统(中国科学院沈阳科学仪器研制中心有限公司)。所用靶材为特制的氧化锌掺杂镓元素的陶瓷靶材,尺寸大小为直径75 mm× 3 mm (厚度) 并绑定在直径 75 mm× 1 mm (厚度) 的 Cu 板上。使用普通的载玻片作为基底,单片基底的规格为10 mm×20 mm×1 mm,在正式溅射之前,依次使用丙酮、去离子水、无水乙醇对基底进行超声水洗,时间设置为 15 min。腔体在溅射前需使用分子泵将真空度抽到3.0×10−4 Pa,调节射频电源的功率分别为70、80、90、95 W,正常起辉之后调节反射功率至最小,同时为了清洗靶材,需要进行15 min预溅射去除靶材表面的杂质。其他的溅射参数为:使用流量显示仪控制工作气体氩气(纯度是99.99%)的流量为20 sccm,工作气压为3.0 Pa,溅射时间设定为20 min。

    • 使用X射线能谱仪(Energy Dispersive Spectrometer, EDS,TFIS Thermo Scientific Apreo S HiVac, FEI公司)对不同溅射功率下沉积制备的镓酸锌薄膜样品进行了分析,得到了镓酸锌薄膜的组成元素与其浓度含量,结果如表1所示,每个数据是取自四个不同样品位置的平均值。由表1可知,在不同溅射功率下,沉积得到的样品组分含量会产生相应的差异。由于GZO薄膜是在ZnO的基础上掺杂Ga元素得到的,Ga元素的含量与Zn元素的含量对于GZO薄膜的光学性能是至关重要的,因此,根据得到的EDS数据,计算得到了Zn/Ga原子浓度比值,由表1可知,Zn/Ga的原子浓度比值随着溅射功率的增大逐渐增大。

      表 1  不同溅射功率下GZO薄膜的EDS数据

      Table 1.  EDS data of GZO films at different sputtering powers

      Sputtering parametersAtomic concentration ratios
      Power/WZnGaOZn/Ga
      702.539.7887.690.259
      802.329.5888.090.242
      902.7311.6485.630.235
      952.9313.3283.740.220

      使用紫外可见分光光度计(UV-3600 plus,岛津公司)在可见光范围内分析了不同溅射功率沉积的GZO薄膜,图1显示了GZO薄膜可见光范围内的透过率变化情况。由图1可知,随着溅射功率的增加,透过率曲线出现蓝移现象,这是由于随着溅射功率的增加,载流子浓度逐渐增加,导致等离子体共振频率决定的波长向短波方向移动。

      图  1  不同溅射功率下GZO薄膜的透过率曲线

      Figure 1.  Transmittance of GZO films at different sputtering powers

      GZO薄膜的禁带宽度可以采取外推法得到,通过绘制(αhν)2与hν的曲线图,通过外推法得出每条曲线的切线[24],切点即为对应条件下的GZO薄膜的禁带宽度Egα为光学吸收系数,h为普朗克常数,ν为频率。图2显示的是不同溅射功率得到的GZO薄膜的禁带宽度的关系,由图2可知,溅射功率为70、80、90、95 W的条件下,相应的禁带宽度依次是4.053、4.071、4.080、4.088 eV,随着溅射功率的增加,禁带宽度逐渐增大,均大于未掺杂Ga元素的ZnO薄膜的禁带宽度(3.30 eV)。因此,在ZnO薄膜的基础上通过掺杂Ga元素可以获得较大的禁带宽度。通过掺杂不同比例的Ga元素,提高了载流子浓度,费米能级进入导带,由于Burstein-Moss 效应,使得禁带宽度增大[25],与图1的透过率曲线蓝移一致。

      图  2  不同溅射功率下GZO薄膜的光学禁带宽度

      Figure 2.  Optical band gap widths of GZO films at different sputtering powers

    • PS-LIBS的实验装置如图3所示,选用微芯片皮秒半导体激光器(MCD-1064-0.5-120, 北京杏林睿光科技有限公司)作为激发光源,其波长为1064 nm,脉宽为350 ps,重复频率为500 Hz,激光能量为122 μJ。脉冲激光被透镜组合L1(f=35 mm)和L2(f=35 mm)进行扩束,然后被透镜L3(f=35 mm)聚焦在GZO薄膜样品的表面,GZO样品被固定在一个具备位移能力的平台上,使得单个激光能够被聚焦在样品表面的不同位置,位移平台的参数由相应的软件控制。产生的等离子体发射由透镜组合L4(f=35 mm)和L5(f=16 mm)收集并耦合到光纤中,通过紧凑型光纤光谱仪(AvaSpecMini2048 CL-SOT8, Avantes Technology)对数据进行分析,光谱仪的探测波长范围为240~420 nm,光谱分辨率为0.01 nm。激光脉冲聚焦点设置在GZO薄膜样品表面以下0.2 mm,获得烧蚀坑的直径被测量为50 μm,同时利用前期PS-LIBS测量膜厚的方法估测GZO被测样品的薄膜厚度大约为400 nm,单次激光脉冲烧蚀坑的中心深度大约为100 nm,详细测量方法见参考文献[24]。实验探测参数详见参考文献[24]中,光谱仪积分时间设定为500 ms,水平位移平台的速度和位移分别设置为25 mm/s 和12.5 mm,位移平台和光谱仪的同步由图3中的光电二极管(PD)进行触发,当激光脉冲重复频率为500 Hz时,相当于互不重叠的250个脉冲烧蚀在薄膜样品表面250个位置,长度为12.5 mm。每个光谱图为250个脉冲的累加烧蚀获得。

      图  3  PS-LIBS 实验装置示意图

      Figure 3.  Schematic diagram of PS-LIBS experimental set up

    • 利用PS-LIBS技术对GZO样品进行检测分析,得到了在240~420 nm范围内的光谱图,如图4所示。根据NIST原子光谱数据库以及图4可知,Ga元素的特征谱线有287.42 nm、294.36 nm和403.29 nm,Zn元素的特征谱线有328.23 nm、330.26 nm和334.50 nm,如表2所示,3条Ga元素谱线,3条Zn元素谱线。由图4可知,Ga元素的谱线强度总体要大于Zn元素的谱线强度,这与两种元素的浓度含量是一致的。为了对GZO样品进行PS-LIBS方法分析,获得较好的分析结果,需要分别为Ga元素与Zn元素选出分析谱线,首先考虑到Ga I 403.29 nm与Zn I 334.50 nm两条谱线的发射强度较其它几条特征谱线较高,其次需要考虑到它们是否被干扰、有无自吸收等,最终将Ga I 403.29 nm与Zn I 334.50 nm两条特征谱线作为Ga元素、Zn元素的分析谱线。

      图  4  GZO薄膜的LIBS光谱图

      Figure 4.  Typical LIBS spectra of GZO thin films

      表 2  目标元素的谱线

      Table 2.  Spectral lines of target elements

      ElementNumber of linesWavelength at the peak positions/nm
      Ga I3287.42, 294.36, 403.29
      Zn I3328.23, 330.26, 334.50
    • 为了更好地了解皮秒激光脉冲诱导等离子体的特征参数和激光与材料的相互作用,为实验测量和元素定量分析提供保证,文中对等离子体温度和电子密度两个重要的参数进行了分析。此次实验使用玻耳兹曼斜率法对等离子体温度进行了计算:

      $$ \ln \frac{\overline{I_{\lambda}^{k i}}}{g_k A_{k i}}=\frac{-E_K}{k_B T}+\ln \frac{F C_s}{U_s(T)} $$ (1)

      式中:$A_{k i}$$E_k$${g_k}$分别表示跃迁几率、上能级能量与统计权重;$ {k_B} $$ T $分别为玻耳兹曼常数与等离子体温度;${U_s(T)}$为等离子体温度下的配分函数;${C_s}$为对应元素的浓度含量;$F$为实验参数。通过对公式(1)进行变形可得:

      $$ {y_i} = m{x_i} + {q_s} $$ (2)

      由公式(1)可知等式左侧的对数项与$ F $成正比,由公式(2)可知,等离子温度是与斜率相关的负倒数。根据表2中列出的镓元素谱线,其对应的光谱参数如表3所示。同时,图5显示了获得的玻耳兹曼图,线性拟合方程也呈现在图中,因此,等离子体温度计算为T=5426.8 K。

      表 3  用于计算等离子体温度的Ga谱线数据

      Table 3.  Spectral lines data of Ga using to calculate the plasma temperature

      ElementsSpectral lines/nmAtomic spectral lines data
      Aki/s−1Ek/eVgk
      Ga I287.421.17×1084.31234
      294.364.02×1084.31312
      403.294.85×1073.07342

      图  5  Ga元素谱线的玻耳兹曼图

      Figure 5.  Boltzmann diagram obtained from Ga lines

    • 使用斯塔克展宽计算电子密度,具体的关系表达式为:

      $$ {\lambda _{stark}} = 2\omega \frac{{Ne}}{{{{10}^{16}}}} $$ (3)

      式中:$ Ne $是电子密度;$ \omega $是谱线的碰撞参数,可以通过查阅参考文献[26]得知;$ {\lambda _{stark}} $是谱线的斯塔克展宽,使用获得的谱线Ga I 403.29 nm对电子密度进行求解,并获得了该谱线的Voigt拟合图,如图6所示。根据公式(3),最终计算得到的电子密度$ Ne $=4.2×1016 cm−3

      图  6  谱线Ga I 403.29 nm的Voigt拟合图

      Figure 6.  Voigt fitting of Ga lines I 403.29 nm

      为了验证皮秒激光与GZO薄膜样品发生相互作用过程中产生的等离子体是处于局部热力学平衡的,电子密度必须足够高才能满足McWhirter准则。

      $$ Ne({{\rm{cm}}^{ - 3}}) \geqslant 1.6 \times {10^{12}}{T^{1/2}}\Delta {E^3} $$ (4)

      式中:T为计算得到的等离子体温度;ΔE为选用谱线的上下能级差(谱线Ga I 403.29 nm的ΔE=3.07 eV),由公式(4)计算可知满足条件的电子密度最小值为Ne=3.41×1015 cm−3,根据上述结果可知,皮秒激光烧蚀GZO薄膜产生的等离子体满足局部热力学平衡条件。

    • 对于功能性纳米薄膜而言,薄膜样品表面元素分布的均匀性是至关重要的,因此,文中对射频磁控溅射法制备GZO薄膜的表面均匀性进行了评估。由于玻璃基底在较短的同一水平位置上的溅射沉积能力基本一致,因此对GZO样品自上而下进行了不同垂直位置的PS-LIBS方法扫描分析。实验中选用的玻璃基底的规格为15 mm×20 mm×1 mm,设定20条自上而下由位移平台进行控制的不同行的垂直位置,同样是以Ga I 403.29 nm谱线强度为研究对象,同一水平位置的强度是通过薄膜样品水平250个脉冲激发辐射谱线强度的累加平均值,与探测的实验参数一致。如图7所示,计算的相对标准偏差为0.67%,显示了较小的信号波动,一方面说明系统探测的稳定性较好,另一方面验证了制备的薄膜表面成分分布的均匀性较好。由图7也可知,不同位置的Ga I 403.29 nm谱线强度呈现出中心较高,两侧较低的趋势,总体变化较为平稳,这与射频磁控溅射法的特点是一致的,在玻璃基底的中心位置,由于其正对靶材,入射的靶材原子较为密集,但总体的致密性较好,可以通过采用旋转基底的方法使得GZO样品表面的元素分布均匀性得到进一步的优化。

      图  7  不同位置的谱线Ga I 403.29 nm的强度变化

      Figure 7.  Intensity variation of Ga lines I 403.29 nm at different positions

    • 由GZO薄膜的光学性能分析可知,GZO薄膜的禁带宽度不仅受到沉积参数的影响,而且与Ga元素、Zn元素的组分配比也是息息相关的。为了快速获得GZO薄膜两种组分配比的关系,使用PS-LIBS技术对不同功率沉积得到的GZO样品进行了快速分析,探讨目标元素分析谱线强度比与样品中两种元素的成分比例之间的关系。如图8所示,选用Ga I 403.29 nm谱线强度与Zn I 334.50 nm谱线强度计算得到了不同功率下沉积GZO薄膜的Zn/Ga组分配比的演化趋势,以及EDS获得的Zn/Ga的原子浓度比。由图8可知,随着溅射功率的增加,两种方法获得的Zn/Ga的比值的趋势是一致的,呈现出逐渐下降的趋势,随着溅射功率的增加,Ga和Zn两种元素的含量都出现了变化,通过PS-LIBS获得的谱线强度比可以实现Zn/Ga组分配比的快速分析。

      图  8  不同溅射功率下GZO薄膜的Zn/Ga谱线强度比与原子浓度比

      Figure 8.  Zn/Ga spectral line intensity ratio and atomic concentration ratio of GZO films at different sputtering powers

    • 为了实现对Zn/Ga组分配比的快速检测,从而达到GZO薄膜光学性能快速分析与沉积参数的快速评估的目的,根据EDS数据分析的结果以及获得的PS-LIBS的光谱数据,以EDS数据的原子浓度比为横轴,以获得的分析谱线强度比为纵轴,绘制了关于Zn/Ga组分配比的定标曲线,如图9所示。图9中,每个点为7次重复测量谱线强度比的平均值,误差棒为7次重复测量的标准偏差。由图9可知,线性拟合方程为:

      y=1.05479x+0.0138

      线性拟合系数R2达到了0.998,显示了较好的拟合效果。EDS数据计算得到Zn/Ga组分配比的计算值与使用PS-LIBS方法获得的光谱强度比值之间的吻合度较高。根据图9的定标曲线,对GZO样品进行性能分析时,可以快速得到其关键元素的组分配比的相关信息,实现对GZO样品的快速检测。同时针对射频磁控溅射法在不同功率条件下沉积GZO样品时,可以依据该定标曲线对相应的沉积参数进行PS-LIBS方法的评估,以实现对沉积条件的评估与沉积参数的优化。

      图  9  不同溅射功率下GZO薄膜的Zn/Ga的定标曲线

      Figure 9.  Zn/Ga calibration curves of GZO films at different sputtering powers

    • 利用PS-LIBS技术对射频磁控溅射法沉积得到的不同溅射功率下的镓酸锌薄膜进行了Zn/Ga组分元素配比的快速定量分析研究,定标曲线的线性拟合系数达到了0.998,此外,计算得到的等离子体温度(T=5426.8 K)与电子密度(Ne=4.2×1016 cm−3)保证了定量分析的准确性。分析结果表明:不同溅射功率下的PS-LIBS光谱图的Zn/Ga强度比与样品的光学性能有着密切的联系,Zn/Ga分析谱线强度比与原子含量比均随着溅射功率的增加而下降,禁带宽度随着镓元素含量的增加而增大,在95 W时达到最大值。实验结果验证了目标元素的谱线强度变化可以反映样品中元素的含量变化,表明PS-LIBS方法凭借其快速、实时、原位、微损伤分析等优势,对于镓酸锌薄膜的快速性能分析以及射频磁控溅射法的参数优化具有积极的意义。

参考文献 (26)

目录

    /

    返回文章
    返回