留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光对石英基底Ta2O5/SiO2滤光膜的损伤效应研究

王云哲 张鲁薇 邵俊峰 曲卫东 康华超 张引

王云哲, 张鲁薇, 邵俊峰, 曲卫东, 康华超, 张引. 脉冲激光对石英基底Ta2O5/SiO2滤光膜的损伤效应研究[J]. 红外与激光工程, 2023, 52(3): 20220482. doi: 10.3788/IRLA20220482
引用本文: 王云哲, 张鲁薇, 邵俊峰, 曲卫东, 康华超, 张引. 脉冲激光对石英基底Ta2O5/SiO2滤光膜的损伤效应研究[J]. 红外与激光工程, 2023, 52(3): 20220482. doi: 10.3788/IRLA20220482
Wang Yunzhe, Zhang Luwei, Shao Junfeng, Qu Weidong, Kang Huachao, Zhang Yin. Damage effect of pulsed laser on Ta2O5/SiO2 filter film on quartz substrate[J]. Infrared and Laser Engineering, 2023, 52(3): 20220482. doi: 10.3788/IRLA20220482
Citation: Wang Yunzhe, Zhang Luwei, Shao Junfeng, Qu Weidong, Kang Huachao, Zhang Yin. Damage effect of pulsed laser on Ta2O5/SiO2 filter film on quartz substrate[J]. Infrared and Laser Engineering, 2023, 52(3): 20220482. doi: 10.3788/IRLA20220482

脉冲激光对石英基底Ta2O5/SiO2滤光膜的损伤效应研究

doi: 10.3788/IRLA20220482
基金项目: 激光与物质相互作用国家重点实验室自主基金课题(SKLLIM-1905);中国科学院长春光学精密机械与物理研究所2019年旭光人才计划
详细信息
    作者简介:

    王云哲,男,博士生,主要从事激光辐照效应方面的研究

  • 中图分类号: TN249

Damage effect of pulsed laser on Ta2O5/SiO2 filter film on quartz substrate

Funds: Fundamental Research Project of Chinese State Key Laboratory of Laser Interaction with Matter ( SKLLIM-1905); Funding of “Xuguang Talents” from CIOMP (2019)
  • 摘要: 随着高能激光系统的发展,对光学薄膜抵抗激光损伤能力的要求越来越高,而激光脉宽是脉冲激光对薄膜损伤行为的重要影响因素。针对Ta2O5/SiO2多层膜,基于1-on-1测试方法,分析其在飞秒、皮秒、纳秒激光作用下的损伤特性。测得800 nm飞秒激光作用下的损伤阈值为1.67 J/cm2; 532 nm和1 064 nm皮秒激光作用下的损伤阈值分别为1.08 J/cm2和1.98 J/cm2; 532 nm和1 064 nm纳秒激光作用下的损伤阈值分别为9.39 J/cm2和21.57 J/cm2,并使用金相显微镜观察了滤光膜的损伤形貌。实验结果表明:飞秒激光对滤光膜的损伤机理主要是多光子电离效应,而皮秒和纳秒激光对滤光膜的损伤机制主要是热效应。滤光膜在飞秒激光作用下的损伤阈值与皮秒激光作用下的损伤阈值相当,纳秒激光作用下的损伤阈值要高一个数量级,透射通带外损伤阈值约为通带内损伤阈值的2倍。
  • 图  1  (a) Ta2O5/SiO2多层膜样片;(b) 多层膜透射的光谱图

    Figure  1.  (a) Ta2O5/SiO2 multilayer film sample; (b) Spectrogram of multilayer film transmission

    图  2  (a) 光学薄膜损伤示意图;(b) 光学薄膜损伤实验平台

    Figure  2.  (a) Schematic diagram of laser damage to optical thin films; (b) Experimental platform of laser damage to optical thin films

    图  3  飞秒、纳秒和皮秒激光对滤光膜损伤几率随激光能量密度的变化

    Figure  3.  Damage probability distribution of multilayer films irradiated by femtosecond, nanosecond and picosecond laser with different laser fluences

    图  4  波长为800 nm的飞秒激光输出下滤光膜损伤形貌与对应的激光能量密度

    Figure  4.  Damage morphology of multilayer film irradiated by 800 nm femtosecond laser for different fluences

    图  5  波长为532 nm的皮秒激光输出下滤光膜损伤形貌与对应的激光能量密度

    Figure  5.  Damage morphology of multilayer film irradiated by 532 nm picosecond laser for different fluences

    图  6  波长为1064 nm的皮秒激光输出下滤光膜损伤形貌与对应的激光能量密度

    Figure  6.  Damage morphology of multilayer film irradiated by 1064 nm picosecond laser for different fluences

    图  7  波长为532 nm的纳秒激光输出下滤光膜损伤形貌与对应的激光能量密度

    Figure  7.  Damage morphology of multilayer film irradiated by 532 nm nanosecond laser for different fluences

    图  8  波长为1064 nm的纳秒激光输出下滤光膜损伤形貌与对应的激光能量密度

    Figure  8.  Damage morphology of multilayer film irradiated by 1064 nm nanosecond laser for different fluences

    图  9  波长为1064 nm的纳秒激光在24.32 J/cm2能量输出下滤光膜的损伤形貌

    Figure  9.  Damage morphology of multilayer film irradiated by 1064 nm nanosecond laser when laser fluence is 24.32 J/cm2

  • [1] Walker T W, Guenther A H, Nielsen P E. Pulsed Laser-induced damage to thin-film optical coatings [J]. IEEE Journal of Quantum Electronics, 1986, 17(10): 2053-2065. doi:  10.1109/JQE.1981.1070650
    [2] Alvisi M, Di Giulio M, Marrone S G, et al. HfO2 films with high laser damage threshold [J]. Thin Solid Films, 2000, 358(1-2): 250-258. doi:  10.1016/S0040-6090(99)00690-2
    [3] Alvisi M, De Tomasi F, Perrone MR, et al. Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films [J]. Thin Solid Films, 2001, 396(1-2): 44-52. doi:  10.1016/S0040-6090(01)01184-1
    [4] Rao K N. Preparation of transparent conductive oxide films by activated reactive evaporation [J]. Optical Engineering, 2002, 41(11): 2705-2706. doi:  10.1117/1.1513798
    [5] Wu Zhujie, Pan Yunxiang, Zhao Jingyuan, et al. Research on laser-induced damage of K9 glass irradiated by millisecond laser [J]. Infrared and Laser Engineering, 2019, 48(8): 0805005. (in Chinese) doi:  10.3788/IRLA201948.0805005
    [6] Zheng Changbin, Shao Junfeng, Li Xuelei, et al. Femtosecond pulsed laser induced damage characteristics on Si-based multi-layer film [J]. Chinese Optics, 2019, 12(2): 2095-1531. (in Chinese) doi:  10.3788/CO.20191202.0371
    [7] Dong Jianing, Fan Jie, Wang Haizhu, et al. Research progress in laser damage of high reflective optical thin films [J]. Chinese Optics, 2018, 11(6): 931-948. (in Chinese) doi:  10.3788/CO.20181106.0931
    [8] Mao Sida, Zou Yonggang, Fan Jie, et al. Influence of plasma treatment on optical and damage properties of TiO2 thin films [J]. Optics and Precision Engineering, 2019, 27(7): 1451-1457. (in Chinese) doi:  10.3788/OPE.20192707.1451
    [9] Wu Jinhui, Ling Xiulan, Liu Ji, et al. Analyses of light field enhancement damage induced by defects in optical thin films [J]. Infrared and Laser Engineering, 2021, 50(8): 20210357. (in Chinese) doi:  10.3788/IRLA20210357
    [10] Pan Shunmin, Wei Yaowei, An Chenhui, et al. Electric field enhancement effect and damage characteristics of nodular defect in 45° high-reflection coating [J]. High Power Laser and Particle Beams, 2020, 32(7): 34-40. (in Chinese) doi:  10.11884/HPLPB202032.200028
    [11] Yao J, Fan Z, Jin Y, et al. Investigation of damage threshold TiO2 coatings at different laser wavelength and pulse duration [J]. Thin Solid Films, 2008, 516(6): 1237-1241. doi:  10.1016/j.tsf.2007.06.058
    [12] Wang X, Shen Z H, Lu J, et al. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes [J]. Journal of Applied Physics, 2010, 108(3): 033103. doi:  10.1063/1.3466996
    [13] Zhou X, Ba R, Zheng Y, et al. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface [C]//SPIE, 2015, 9532: 95320E.
    [14] Matsukawa T, Nawata K, Notake T, et al. Pump-beam-induced optical damage depended on repetition frequency and pulse width in 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal [J]. Applied Physics Letters, 2013, 103(2): 023302. doi:  10.1063/1.4813602
    [15] Deng Xiaohong, Su Junhong. Influence of different wavelengths on damage threshold of dielwctric films [J]. Optics & Optoelectronic Technology, 2020, 18(4): 96-105. (in Chinese) doi:  10.19519/j.cnki.1672-3392.2020.04.015
    [16] Becker J, Bernhardt A. ISO 11254, an international standard for the determination of the laser-induced damage threshold [C]//SPIE, 1994, 2114: 703-713.
    [17] Wu S J, Shi W, Su J H. Using an external electric field to reduce laser damage of DLC films [J]. International Journal of Materials and Product Technology, 2013, 45(1-4): 74-82. doi:  10.1504/IJMPT.2012.051342
    [18] Kaiser A, Rethfeld B, Vicanek M, et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses [J]. Physical Review B, 2000, 61(17): 11437-11450. doi:  10.1103/PhysRevB.61.11437
    [19] Mero M, Liu J, Rudolph W, et al. Scaling laws of femtosecond laser pulse induced breakdown in oxide films [J]. Physical Review B, 2005, 71(11): 115-109. doi:  10.1103/PhysRevB.71.115109
    [20] 朱志武. 短脉冲激光对可见光CCD及滤光片组件的损伤效应研究[D]. 国防科学技术大学学位论文, 2013.

    Zhu Zhiwu. Short pulsed laser induced damage to visible light ccd and optical filter module[D]. Changsha: National University of Defense Technology, 2013. (in Chinese)
    [21] Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection [C]//SPIE, 1999, 3578: 387-397.
  • [1] 王玺, 赵楠翔, 张永宁, 王毕艺, 董骁, 邹岩, 雷武虎, 胡以华.  2.79 μm中红外激光对CMOS图像传感器的辐照效应研究 . 红外与激光工程, 2023, 52(6): 20230168-1-20230168-7. doi: 10.3788/IRLA20230168
    [2] 刘红煦, 王頔, 李晨昂, 魏智, 金光勇, 张艳鹏, 于迪.  长脉冲致硅基 QPD损伤面积及形貌实验研究 . 红外与激光工程, 2021, 50(4): 20200455-1-20200455-7. doi: 10.3788/IRLA20200455
    [3] 武锦辉, 凌秀兰, 刘吉, 陈鑫.  缺陷诱导光学薄膜光场增强损伤分析 . 红外与激光工程, 2021, 50(8): 20210357-1-20210357-6. doi: 10.3788/IRLA20210357
    [4] 盛泉, 司汉英, 安建民, 张海伟, 张钧翔, 丁宇, 李升才, 史伟, 姚建铨.  高功率光纤激光器反向光放大和损伤特性数值分析 . 红外与激光工程, 2020, 49(10): 20200009-1-20200009-7. doi: 10.3788/IRLA20200009
    [5] 盛泉, 司汉英, 张海伟, 张钧翔, 丁宇, 史伟, 姚建铨.  高功率光纤激光器反向光放大和损伤特性数值分析 . 红外与激光工程, 2020, 49(): 1-6.
    [6] 安恒, 李得天, 文轩, 张晨光, 王鷁, 马奎安, 李存惠, 薛玉雄, 杨生胜, 曹洲.  高速PWM单粒子瞬态效应脉冲激光模拟试验研究 . 红外与激光工程, 2020, 49(8): 20190533-1-20190533-7. doi: 10.3788/IRLA20190533
    [7] 付秀华, 张功, 张静, 刘冬梅, 杨伟声, 木锐.  短中波红外探测系统宽波段高透过率薄膜 . 红外与激光工程, 2019, 48(10): 1017001-1017001(6). doi: 10.3788/IRLA201948.1017001
    [8] 安恒, 张晨光, 杨生胜, 薛玉雄, 王光毅, 王俊.  SiGeBiCMOS线性器件脉冲激光单粒子瞬态效应研究 . 红外与激光工程, 2019, 48(3): 320001-0320001(7). doi: 10.3788/IRLA201948.0320001
    [9] 张震, 徐作冬, 程德艳, 师宇斌, 张检民.  FT-CCD的纳秒脉冲激光毁伤效应 . 红外与激光工程, 2017, 46(10): 1003001-1003001(5). doi: 10.3788/IRLA201746.1003001
    [10] 邵俊峰, 郭劲, 王挺峰, 郑长彬.  激光脉冲串对电荷耦合器件积累损伤效应研究 . 红外与激光工程, 2017, 46(10): 1003002-1003002(6). doi: 10.3788/IRLA201747.1003002
    [11] 于军立, 孟庆龙, 叶荣, 钟哲强, 张彬.  飞秒激光作用下光整流晶体的损伤阈值分析 . 红外与激光工程, 2016, 45(1): 106004-0106004(6). doi: 10.3788/IRLA201645.0106004
    [12] 周成虎, 张秋慧, 黄明明, 黄全振.  杂质微粒对薄膜的损伤效应 . 红外与激光工程, 2016, 45(7): 721004-0721004(6). doi: 10.3788/IRLA201645.0721004
    [13] 冯爱新, 庄绪华, 薛伟, 韩振春, 孙铁囤, 陈风国, 钟国旗, 印成, 何叶.  1 064 nm、532 nm、355 nm波长脉冲激光辐照多晶硅损伤特性研究 . 红外与激光工程, 2015, 44(2): 461-465.
    [14] 张长桃, 张朝阳, 蔡明霞, 丁伟, 毛卫平, 徐宇蓝.  脉冲激光热力冲击效应对电沉积的作用 . 红外与激光工程, 2015, 44(1): 65-70.
    [15] 詹光达, 马彬, 张艳云, 马宏平.  预处理效应对1 064 nm 反射膜本征损伤性能的影响 . 红外与激光工程, 2014, 43(6): 1715-1721.
    [16] 田秀芹, 肖思, 陶少华, 袁战忠, 周炎强.  飞秒超短脉冲激光对硅太阳能电池的损伤阈值研究 . 红外与激光工程, 2014, 43(3): 676-680.
    [17] 杨利红, 王涛, 韩锦涛, 苏俊宏.  脉冲激光诱导TiO2/SiO2薄膜表面损伤性能实验 . 红外与激光工程, 2014, 43(2): 365-368.
    [18] 代福, 熊胜明.  高重复频率DPL 激光对光学薄膜元件损伤实验研究 . 红外与激光工程, 2014, 43(7): 2074-2080.
    [19] 汤伟, 邵俊峰, 赵帅, 王挺峰, 郭劲.  高重频CO2激光对Hg0.826Cd0.174Te晶体的损伤 . 红外与激光工程, 2013, 42(10): 2663-2668.
    [20] 邱冬冬, 王睿, 程湘爱, 张震, 江天.  超短脉冲激光对单晶硅太阳能电池的损伤效应 . 红外与激光工程, 2012, 41(1): 112-115.
  • 加载中
图(9)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  21
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 修回日期:  2022-09-14
  • 刊出日期:  2023-03-25

脉冲激光对石英基底Ta2O5/SiO2滤光膜的损伤效应研究

doi: 10.3788/IRLA20220482
    作者简介:

    王云哲,男,博士生,主要从事激光辐照效应方面的研究

基金项目:  激光与物质相互作用国家重点实验室自主基金课题(SKLLIM-1905);中国科学院长春光学精密机械与物理研究所2019年旭光人才计划
  • 中图分类号: TN249

摘要: 随着高能激光系统的发展,对光学薄膜抵抗激光损伤能力的要求越来越高,而激光脉宽是脉冲激光对薄膜损伤行为的重要影响因素。针对Ta2O5/SiO2多层膜,基于1-on-1测试方法,分析其在飞秒、皮秒、纳秒激光作用下的损伤特性。测得800 nm飞秒激光作用下的损伤阈值为1.67 J/cm2; 532 nm和1 064 nm皮秒激光作用下的损伤阈值分别为1.08 J/cm2和1.98 J/cm2; 532 nm和1 064 nm纳秒激光作用下的损伤阈值分别为9.39 J/cm2和21.57 J/cm2,并使用金相显微镜观察了滤光膜的损伤形貌。实验结果表明:飞秒激光对滤光膜的损伤机理主要是多光子电离效应,而皮秒和纳秒激光对滤光膜的损伤机制主要是热效应。滤光膜在飞秒激光作用下的损伤阈值与皮秒激光作用下的损伤阈值相当,纳秒激光作用下的损伤阈值要高一个数量级,透射通带外损伤阈值约为通带内损伤阈值的2倍。

English Abstract

    • 研究薄膜与激光相互作用过程及损伤机理,对于明确薄膜发生损伤与未发生损伤情况下激光对成像器件的作用效果、成像器件设计与制备工艺的提升及抗激光加固技术具有十分重要的意义,也为相关工业、国防等领域奠定应用基础。在过去几十年里,光学薄膜广泛应用于高能激光系统中,其抗激光损伤的能力对整个激光系统的运行至关重要[1-6]。激光诱导薄膜的损伤阈值(LIDT)成为高能激光系统设计的重要基础,也成为光学系统对薄膜选择的重要参考因素之一。提高薄膜损伤阈值的第一步就是能够精确测量出薄膜的损伤阈值。目前,影响光学薄膜损伤阈值的主要因素包括薄膜本身材料的物理性质、光学薄膜的加工工艺以及激光输出参数等。在这些影响因素中光学薄膜的制备方法、加工工艺和材料的物理性质对薄膜损伤阈值有一定的影响,但脉冲激光器输出参数对薄膜损伤阈值的影响是决定性的[7-10]

      不同激光脉冲宽度对光学薄膜的损伤效应得到了国内外研究者的广泛关注。2008年,姚等人研究了TiO2单层膜和TiO2/SiO2高反射膜在不同脉冲宽度下的损伤阈值,并探讨了薄膜损伤机理与激光脉冲宽度的关系[11]。在2010年,王等人研究了毫秒、纳秒和皮秒激光对硅的损伤效应[12]。2015年,周等人研究了K9玻璃和UBK7玻璃在不同脉冲宽度下的损伤阈值,分析了损伤阈值与脉冲宽度的关系[13];Matsukawa等人研究了不同脉宽条件下泵浦光束造成的损伤差异[14]。2020年,邓等人用脉冲激光对二氧化硅、二氧化铪和二氧化钛三种单层薄膜样片进行了损伤阈值测量,阈值结果都随激光波长的减小而降低[15]。目前,激光脉宽对光学薄膜损伤行为影响的研究发展迅速,然而对于多光谱滤光膜在不同脉宽激光作用下的损伤效应研究还鲜有报道。典型多光谱相机多采用分立或者渐变色谱镀膜方法(R,G,B,IR,Pan)配合时间延迟推扫相机或三色CCD器件实现多光谱成像和信息处理功能,广泛应用于光电制导、遥感探测、空间成像等领域。多光谱滤光片作为多光谱相机中的关键光学元件,经常根据实际需要设计合适的介质多层滤光膜,研究滤光膜与脉冲激光相互作用过程及损伤机理,对于多光谱薄膜设计与制备工艺的提升、多光谱相机的抗激光加固技术具有十分重要的意义。因此,文中研究了飞秒、皮秒和纳秒脉冲激光对石英基底Ta2O5/SiO2多层单色滤光膜的损伤阈值及损伤形貌。

      采用Ti: sapphire脉冲放大系统输出的飞秒激光、EKSPLA皮秒激光及Nimma-900纳秒激光作为光源,通过1-on-1的测试方法,对石英基底上电子束蒸发工艺镀制的Ta2O5/SiO2多层单色滤光膜进行激光损伤阈值测试,使用金相显微镜观测薄膜损伤形貌,分析损伤阈值的“脉宽效应”。旨在通过形貌学方法进行实验研究,为后续分析损伤机理奠定基础。

    • 图1(a)所示为以熔石英为基底的Ta2O5/SiO2多层膜。该多层薄膜由不同光学厚度的高低折射率材料(Ta2O5和SiO2)交叠制成。图1(b)为该多层滤光膜的透射光谱曲线,透射谱段为420~550 nm。

      图  1  (a) Ta2O5/SiO2多层膜样片;(b) 多层膜透射的光谱图

      Figure 1.  (a) Ta2O5/SiO2 multilayer film sample; (b) Spectrogram of multilayer film transmission

    • 实验采用Ti: sapphire脉冲放大系统输出飞秒激光,其波长、脉宽分别为800 nm和50 fs,偏振状态为线偏振。所采用的皮秒激光器为EKSPLA公司的Nd:YAG皮秒激光器,具有二级管泵浦的固态主振荡器和闪光等泵浦的再生放大器,其波长为1064 nm/532 nm,脉宽为50 ps。纳秒激光器为Nimma-900纳秒激光器,脉宽为9 ns,输出激光波长为1064 nm/532 nm。

      图2(a)给出了滤光膜损伤实验的装置。激光器输出激光后,通过可旋转的半波片(HWP)和格兰棱镜(Glan)对输出的脉冲能量进行调控,分束镜L1(固定分光比)用于对激光能量进行采样,由能量计实时监测,聚焦镜L2用于对激光束进行聚焦。待测样品被固定在一个由计算机控制的电动三维平移台,一个显微镜和CCD相机用于实时观测激光对薄膜损伤的实验过程,实验结束后使用金相显微镜(台湾奕叶EB-4)细致观测薄膜的损伤形貌。

      图  2  (a) 光学薄膜损伤示意图;(b) 光学薄膜损伤实验平台

      Figure 2.  (a) Schematic diagram of laser damage to optical thin films; (b) Experimental platform of laser damage to optical thin films

    • 激光损伤阈值是表征薄膜质量的关键指标。介电膜本身吸收的激光能量很少,薄膜的损伤充满不确定性,为了确定受试样品的损伤阈值,实验采用国际标准ISO11254“1-on-1”测试方式[16],即单次辐照测试。首先使用刀口法测得光斑大小为150 μm,在测试过程中,逐渐降低激光器输出的脉冲能量,从样品完全损伤到没有任何损伤点。每个脉冲能量采样20个点,两个脉冲能量采样点之间的间距为200 μm。依次记录各脉冲能量下有损伤的采样点所占总采样点的比例,即为该脉冲能量密度下的损伤几率。以激光能量为横轴,损伤几率为纵轴,得出损伤几率与激光能量点的分布,再用直线拟合并外推到零损伤几率,所对应的激光能量值即为该样品的激光诱导损伤阈值(LIDT)[17]

    • 飞秒、皮秒及纳秒激光对样品的损伤概率随脉冲输出能量变化如图3所示。根据图3可以得到样品800 nm飞秒激光损伤阈值为1.67 J/cm2;波长532 nm和1064 nm皮秒激光输出条件下损伤阈值分别为1.08 J/cm2和1.98 J/cm2;波长532 nm和1064 nm纳秒激光输出条件下损伤阈值分别为9.39 J/cm2和21.57 J/cm2。总结实验结果发现,无论是透射通带内还是通带外,纳秒激光作用下光学薄膜的损伤阈值最高,飞秒激光损伤阈值与皮秒激光损伤阈值相当。纳秒激光损伤阈值要比飞秒激光损伤阈值和皮秒激光损伤阈值高一个量级。

      图  3  飞秒、纳秒和皮秒激光对滤光膜损伤几率随激光能量密度的变化

      Figure 3.  Damage probability distribution of multilayer films irradiated by femtosecond, nanosecond and picosecond laser with different laser fluences

      结合滤光膜的透射光谱分布(如图1(b)所示)和不同波长纳秒、皮秒激光作用下的损伤阈值可发现,当激光波长位于滤光膜通带内时的损伤阈值要明显低于激光波长位于截止区时。这是由于当输出激光波长位于滤光膜通带内时,相比于其他波段,更多的能量会透过样品,这些能量被其内部的杂质吸收后更易对样品造成损伤。

    • 不同脉宽激光对薄膜的损伤阈值差异主要是由于不同的损伤机制。飞秒激光对多层膜的损伤主要是由于体吸收引起的。当电子密度达到特定值时,会造成电离击穿。皮秒、纳秒激光对多层膜的损伤主要是由于薄膜中的杂质缺陷吸收激光能量引起的热效应造成的。为了验证这一结论,使用金相显微镜观察飞秒、皮秒和纳秒激光辐射多层膜的损伤形貌。

      图4~图8所示为不同激光脉冲能量下,飞秒、皮秒和纳秒激光照射的多层滤光膜的损伤形貌,可以看出三种不同脉宽激光照射下的损伤形貌有明显的差异。如图4(a)所示,当飞秒激光输出能量接近损伤阈值时,损伤区域较小并表现得相对模糊,其边缘处比较完整且不存在离散的损伤点。这也证明飞秒激光对多层膜的表面损伤是内在的,缺陷对飞秒激光的损伤行为几乎没有影响。随着飞秒激光输出能量增加,样品开始出现自然分层现象,层数越来越多,损伤区域更加清晰与规则,如图4(b)~(d)所示。

      图  4  波长为800 nm的飞秒激光输出下滤光膜损伤形貌与对应的激光能量密度

      Figure 4.  Damage morphology of multilayer film irradiated by 800 nm femtosecond laser for different fluences

      对于皮秒激光,输出能量接近损伤阈值时,损伤区域并不规则,其由许多小损伤点组成。在激光照射区内的许多离散的小缺陷对激光的吸收系数高于膜层材料,因此在缺陷及其周围区域最先出现薄膜的损伤,也就是图5(a)和图6(a)中观察到的离散的损伤点。这些损伤点的形状相对规则,分布的比较稀疏,绝大多数的尺寸小于2 μm。随着皮秒激光输出能量的增加,损伤区域出现更多损伤点,分布也更加密集,区域边缘逐渐出现轮廓明显的浅裂缝,此时损伤区域的面积大概为15 μm,如图5(b)、(c)和图6(b)、(c)所示。随着皮秒激光输出能量的继续增加,损伤区域的边缘变得较为清晰和规则,并且是一种往外扩散的趋势。热熔融对表面的烧蚀痕迹更加明显,损伤的中心区域和边缘处有小规模的分层现象,如图5(d)所示,波长为532 nm皮秒激光相对于1 064 nm皮秒激光(图6(d) )对样品的损伤形貌分层现象更加明显,轮廓也更加清晰。

      图  5  波长为532 nm的皮秒激光输出下滤光膜损伤形貌与对应的激光能量密度

      Figure 5.  Damage morphology of multilayer film irradiated by 532 nm picosecond laser for different fluences

      图  6  波长为1064 nm的皮秒激光输出下滤光膜损伤形貌与对应的激光能量密度

      Figure 6.  Damage morphology of multilayer film irradiated by 1064 nm picosecond laser for different fluences

      纳秒激光损伤形貌如图7~图8所示。与皮秒激光的损伤规律相似的是:当输出能量接近损伤阈值时,最先出现一些离散的损伤点,随着输出能量增加,损伤点的数量增多,分布更加密集,直至出现成片的损伤区,并伴随着逐渐往外扩散的趋势,并且在内部出现分层现象。其损伤形貌存在几个特点:第一,有熔融物残留以及膜层翘起和裂纹,这也证明纳秒激光对样品造成了热损伤;第二,损伤区域内有一些损伤点,说明损伤的原因为缺陷诱导;第三,观察1064 nm纳秒激光作用下的损伤形貌,发现在膜层界面处发生分层剥落现象,最表层的膜层脱落面积明显大于内层的膜层。出现表层剥落现象的原因可能是样片表面存在一些杂质(比如空气中的灰尘),1064 nm纳秒激光输出的能量密度较高,杂质在高能量密度激光照射下电离出电子,发生光电离现象,这些电子急剧吸收能量,从而造成区域性的膜层剥落。

      图  7  波长为532 nm的纳秒激光输出下滤光膜损伤形貌与对应的激光能量密度

      Figure 7.  Damage morphology of multilayer film irradiated by 532 nm nanosecond laser for different fluences

      图  8  波长为1064 nm的纳秒激光输出下滤光膜损伤形貌与对应的激光能量密度

      Figure 8.  Damage morphology of multilayer film irradiated by 1064 nm nanosecond laser for different fluences

      在不同脉宽激光作用下,样品损伤行为的不确定性存在差异,即纳秒激光作用下样品损伤行为不确定性最大,皮秒激光作用下的不确定性较小,飞秒激光作用下几乎不存在损伤行为的不确定性。主要体现在:第一,如图3所示,纳秒激光作用下零概率损伤的能量密度与完全损伤的能量密度跨度最大,皮秒其次,飞秒激光作用下的能量密度跨度最小;第二,如图9所示,在同一能量密度的激光作用下,纳秒激光损伤区域的面积大小存在的差异较大。这是因为皮秒和纳秒激光作用下样品的损伤取决于膜层中的缺陷,其分布和尺寸都会对膜层的损伤造成影响,研究发现膜层中的缺陷对纳秒激光更加敏感,因此相较于皮秒激光,纳秒激光作用下样品损伤行为的不确定性更大。而飞秒激光作用下,多光子电离是造成膜层损伤的主要原因,自由电子的激发是由膜层材料的本征属性决定的,所以其损伤行为最为确定,不确定性最小。

      图  9  波长为1064 nm的纳秒激光在24.32 J/cm2能量输出下滤光膜的损伤形貌

      Figure 9.  Damage morphology of multilayer film irradiated by 1064 nm nanosecond laser when laser fluence is 24.32 J/cm2

      观察损伤形貌发现,随着激光能量密度变大,三种脉宽激光作用下滤光膜均会出现分层剥落现象。其中,纳秒和皮秒激光损伤区域中能够观察到热熔融烧蚀和裂纹等热损伤痕迹,而飞秒激光损伤区域完整规则,不存在热损伤痕迹。分析认为,当激光能量密度足够大时,纳秒和皮秒激光作用条件下,一个个损伤点被成区域性的膜层剥落行为所掩盖,众多缺陷可简化成膜层中一个区域性的整体,该区域性的整体相比膜层的其他位置对激光有较高的吸收系数。而对于飞秒激光,能量密度已足够充分电离膜层材料从而造成损伤,决定该损伤过程的是薄膜材料的本征属性,缺陷的作用可以忽略。

    • 光学薄膜在纳秒、皮秒和飞秒激光照射下具有不同的损伤特性,这也反映出不同脉宽激光对薄膜有不同的损伤机制。针对于薄膜损伤的内部机理,现阶段一般认为当长脉冲激光照射光学薄膜时,薄膜损伤主要源于表面缺陷和内部杂质诱导的热力损伤,短脉冲激光对光学薄膜造成损伤主要是由于雪崩电离以及超短脉冲激光造成的光电离和隧穿电离损伤。

      对于飞秒激光来说,其脉冲峰值功率非常高。因此电磁场强度非常高,非线性多光子电离、冲击电离和隧穿电离是造成多层膜损伤的主要原因,杂质和缺陷引起的非内部吸收机制造成的薄膜损伤可以忽略不计。当飞秒激光的脉冲宽度较长时,非线性的多光子电离和碰撞电离一起作用造成损伤;当脉冲宽度较短时,多光子电离会损伤薄膜;当脉冲宽度非常短时,主要损伤机制是隧穿电离。实验中使用的飞秒激光的脉冲宽度为50 fs,属于较短的脉冲宽度,所以针对飞秒损伤机理,只考虑多光子电离对光学薄膜的损伤作用。多光子电离产生初始导带电子,随后导带电子吸收飞秒脉冲能量,当其能量比材料的带隙能量大时,会与价带电子碰撞并产生一个新电子,从而会出现很多新的自由电子,临界电子浓度由等离子体谐振频率与飞秒激光频率相等时来确定:

      $$ {n}_{cr}=\frac{{\varepsilon }_{0}{m}_{e}^{*}{\omega }^{2}}{{e}^{2}} $$ (1)

      当自由电子的浓度达到1021/cm3时,便会对薄膜造成损伤[18-19]

      实验中使用的皮秒激光的脉冲宽度为50 ps,纳秒激光的脉冲宽度为9 ns,一般认为长脉冲与短脉冲的分界点位于10 ps[20],因此二者都是长脉冲,即造成薄膜损伤的主要原因是热损伤。对于皮秒和纳秒激光,多层膜内部对激光能量的吸收是非常小的,单独的内部吸收不会直接导致多层膜的损坏,其损伤主要由外部吸收激光能量导致,也就是说在皮秒和纳秒激光作用下多层膜的损伤阈值取决于材料中的缺陷。目前被广泛接受的缺陷损伤模型是热损伤模型[21]。缺陷作为损伤源,一部分激光会穿透缺陷表面,聚焦在缺陷内部,使电场增强。由于缺陷本身的吸收特性,使其内部吸收大量的激光能量。缺陷与膜层之间的边界并不连续,缺陷内部的热量流动会受到阻碍,在缺陷和膜层的边界处产生温度梯度,从而形成热应力场。当边界处的温度场达到材料的熔点或应力场达到材料的应力极限时,该缺陷位置附近会首先受到热损伤,从而对薄膜造成损伤。考虑缺陷吸收激光能量的热响应过程,受热区域内的传导方程为:

      $$ \mathrm{\kappa }\frac{4\mathrm{\pi }{{r}}_{{m}}^{3}}{3}\frac{\partial T}{\partial t}={{D}}_{{T}}\frac{4\mathrm{\pi }{{r}}^{3}}{3}{\mathrm{\alpha }}_{{T}}{W} $$ (2)

      式中:$ \mathrm{\kappa } $为热导率;T为受热区域平均温度;W为激光功率密度;${\mathrm{\alpha }}_{{T}}$为杂质热吸收系数。受热区域的半径为:

      $$ {r}_{m}=r+\sqrt{{D}_{T}{t}_{p}} $$ (3)

      式中:r为缺陷半径;DT为热扩散系数;tp为激光脉冲宽度。将公式(2)代入公式(1)中求解,可以得到受热区域的平均温度为:

      $$ {T}=\frac{{{r}}^{3}{\mathrm{\alpha }}_{{T}}{W}{{t}}_{{p}}}{\mathrm{\rho }{{c}}_{{m}}{({r}+\sqrt{{{D}}_{{T}}{{t}}_{{p}}})}^{3}} $$ (4)

      式中:$ {\;\rho } $为受热区域的密度;${{c}}_{{m}}$为受热区域的质量热容。

      由公式(3)以及根据脉冲激光损伤均匀透明体材料的研究结果,在热损伤机制下,材料表面损伤阈值与激光脉宽的关系服从$ {t}_{p}^{0.5} $规律[20]。假设纳秒和皮秒激光照射下,滤光膜发生损伤的材料属性和光场分布相同,实验中测得滤光膜在532 nm和1064 nm皮秒激光下的阈值分别为1.08 J/cm2和1.98 J/cm2,由$ {t}_{p}^{0.5} $规律推得纳秒激光下的阈值为14.49 J/cm2和26.56 J/cm2,实际结果为9.39 J/cm2和21.57 J/cm2。造成实际结果偏小的原因可能是:不同尺寸的杂质对不同脉宽激光的敏感度不同,纳秒激光敏感度高的杂质尺寸较大[20]。由公式(3)可知,受热区域的平均温度与杂质半径成正比例关系,当其他条件相同时,大杂质及其周围区域的温度要高于小杂质及其周围区域,即激光照射下大杂质周围区域更易发生损伤。因此,在考虑到引起损伤的杂质尺寸不同的因素后,实验测得纳秒激光作用下的损伤阈值小于由皮秒激光根据$ {t}_{p}^{0.5} $规律推得的损伤阈值是合理的。

      在目前的实验条件下,飞秒激光对多层膜的损伤机制主要是电离效应,皮秒和纳秒激光对多层膜的损伤机制主要是热效应,这一点也通过获得的损伤形貌得到了验证。

    • 文中研究了飞秒、皮秒和纳秒脉冲激光对多光谱滤光膜的损伤特性,重点讨论了滤光膜在不同脉宽激光作用下的损伤形貌与机制。实验结果分析表明,滤光膜在波长800 nm飞秒激光辐射下的损伤阈值为1.67 J/cm2,在波长532 nm和1064 nm皮秒激光辐射下损伤阈值分别为1.08 J/cm2和1.98 J/cm2,在波长532 nm和1064 nm纳秒激光辐射下损伤阈值分别为9.39 J/cm2和21.57 J/cm2。这是由于不同脉宽激光对滤光膜损伤机制不同,即飞秒激光对滤光膜的损伤机制主要是多光子电离效应,而皮秒和纳秒激光对多层膜的损伤机制主要是热效应。观察损伤形貌,发现飞秒激光作用下随着能量密度增加,膜层材料被电离损伤从而出现明显的分层剥落现象,损伤区域轮廓完整清晰;对于纳秒和皮秒激光,虽然滤光膜都是由缺陷引起的损伤,但形貌上来看初始损伤点的大小、密度以及严重损伤时热损伤痕迹差异明显,分析认为造成皮秒和纳秒激光损伤差异的原因是膜层中的缺陷对不同脉宽的激光敏感度不同。该研究对于滤光膜在激光应用系统、强激光系统的应用具有一定的参考价值。

参考文献 (21)

目录

    /

    返回文章
    返回