留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层膜光学元件对光束线宽响应特性的研究

杨仕琪 曹袁睿 杨霄 白金林 孟阳 刘华松

杨仕琪, 曹袁睿, 杨霄, 白金林, 孟阳, 刘华松. 多层膜光学元件对光束线宽响应特性的研究[J]. 红外与激光工程, 2023, 52(12): 20230574. doi: 10.3788/IRLA20230574
引用本文: 杨仕琪, 曹袁睿, 杨霄, 白金林, 孟阳, 刘华松. 多层膜光学元件对光束线宽响应特性的研究[J]. 红外与激光工程, 2023, 52(12): 20230574. doi: 10.3788/IRLA20230574
Yang Shiqi, Cao Yuanrui, Yang Xiao, Bai Jinlin, Meng Yang, Liu Huasong. Study on the response characteristics of multilayer optical elements to beam linewidth[J]. Infrared and Laser Engineering, 2023, 52(12): 20230574. doi: 10.3788/IRLA20230574
Citation: Yang Shiqi, Cao Yuanrui, Yang Xiao, Bai Jinlin, Meng Yang, Liu Huasong. Study on the response characteristics of multilayer optical elements to beam linewidth[J]. Infrared and Laser Engineering, 2023, 52(12): 20230574. doi: 10.3788/IRLA20230574

多层膜光学元件对光束线宽响应特性的研究

doi: 10.3788/IRLA20230574
基金项目: 国家自然科学基金项目(61975150)
详细信息
    作者简介:

    杨仕琪,男,硕士生,主要从事光学薄膜测试方面的研究

  • 中图分类号: O484

Study on the response characteristics of multilayer optical elements to beam linewidth

Funds: National Natural Science Foundation of China (61975150)
  • 摘要: 多层膜光学元件的设计是基于理想的单色光进行的,然而光源发出的光束均存在光谱线宽,在非单色光条件下工作,元件的光学特性会偏离理论值。为了分析光束线宽对多层膜光学元件的光学特性影响,首先,基于薄膜辐射特性的部分相干理论,提出了准单色光束入射条件下多层膜光学特性计算方法;其次,通过数值模拟实验研究了光束线宽对窄带滤光片光学特性的影响。研究结果表明:随着线宽增大,滤光片透射通带的矩形度逐渐降低,半高全宽先降低后增大,其在滤光片的理论半高全宽附近取得最小值;光谱线型主要改变透射通带的透射率,对于透射谱线的矩形度以及半高全宽影响较小;为了保证窄带滤光片的通带形状,入射光束的线宽应当小于滤光片透射谱线的理论半高全宽的一半,光谱线型应当趋近于矩形线型函数。
  • 图  1  多层膜中的电磁波分布

    Figure  1.  Electromagnetic wave distribution in multilayer films

    图  2  窄带滤光片膜系理论透射谱线

    Figure  2.  Theoretical transmission spectrum of narrow-band filter

    图  3  光束线宽为 (a) 0.5 nm、(b) 2.5 nm、(c) 4.5 nm、(d) 9.0 nm时,高斯线型、洛伦兹线型与矩形线型的窄带滤光片膜系透射谱线对比

    Figure  3.  Comparison of transmission spectra of narrowband filter with Gaussian, Lorentzian and rectangular line-shapes for beam linewidths of (a) 0.5 nm, (b) 2.5 nm, (c) 4.5 nm, and (d) 9.0 nm

    图  4  高斯线型、洛伦兹线型与矩形线型条件下,(a)中心波长、(b)透射通带峰值透射率、(c)半高宽度以及(d)矩形度随光束线宽的变化曲线

    Figure  4.  The curves of (a) central wavelength, (b) peak transmittance of transmission band, (c) full width at half maximum and (d) rectangle degree versus beam linewidth under Gaussian, Lorentzian and rectangular line-shape conditions

    图  5  高斯线型条件下,线宽为(a) 0.5 nm、(b) 2.5 nm、(c) 4.5 nm、(d) 9.0 nm时,不同基底厚度的滤光片整体透射谱线对比图

    Figure  5.  Comparison of the overall transmission spectra of filters with different substrate thicknesses for linewidths of (a) 0.5 nm, (b) 2.5 nm, (c) 4.5 nm, and (d) 9.0 nm under the Gaussian line-shape condition

    图  6  高斯线型条件下,线宽为(a) 0.5 nm;(b) 2.5 nm;(c) 4.5 nm;(d) 9.0 nm时,单层基底1064 nm处透射率随基底厚度的变化曲线

    Figure  6.  Variation curves of transmittance at 1064 nm with substrate thickness for monolayer substrates with linewidths of (a) 0.5 nm; (b) 2.5 nm; (c) 4.5 nm, and (d) 9.0 nm under the Gaussian line-shape condition

    图  7  高斯线型条件下,线宽为0.5 nm、2.5 nm、4.5 nm和9.0 nm时,(a)透射谱线Tmax以及(b) FWHM随基底厚度的变化曲线

    Figure  7.  Gaussian line-shape conditions with linewidths of 0.5 nm, 2.5 nm, 4.5 nm, and 9.0 nm, (a) Tmax, and (b) FWHM versus substrate thickness curves

  • [1] 焦宏飞, 汲小川, 张锦龙, 等. 高光谱性能光学薄膜研究进展 [J]. 光学精密工程, 2022, 30(21): 2591-607. doi:  10.37188/OPE.20223021.2591

    Jiao Hongfei, Ji Xiaochuan, Zhang Jinlong, et al. Research progress of advanced high-spectral-performance optical coatings [J]. Optics and Precision Engineering, 2022, 30(21): 2591-2607. (in Chinese) doi:  10.37188/OPE.20223021.2591
    [2] 黄秋实, 齐润泽, 张哲, 等. 高性能大尺寸X射线多层膜反射元件研制进展 [J]. 光学精密工程, 2022, 30(21): 2793-804. doi:  10.37188/OPE.20223021.2793

    Huang Qiushi, Qi Runze, Zhang Zhe, et al. Development of high performance and large size X-ray multilayer reflective optics [J]. Optics and Precision Engineering, 2022, 30(21): 2793-2804. (in Chinese) doi:  10.37188/OPE.20223021.2793
    [3] 张众, 张琪雅, 何佳莲, 等. 中子薄膜器件与光学系统的研究进展 [J]. 光学精密工程, 2022, 30(21): 2752-64. doi:  10.37188/OPE.20223021.2752

    Zhang Zhong, Zhang Qiya, He Jialian, et al. Development of film elements and optics for neutron [J]. Optics and Precision Engineering, 2022, 30(21): 2752-2764. (in Chinese) doi:  10.37188/OPE.20223021.2752
    [4] 伊圣振, 黄秋实, 齐润泽, 等. 等离子体诊断用多层膜X射线成像光学研究进展 [J]. 光学精密工程, 2022, 30(21): 2783-92. doi:  10.37188/OPE.20223021.2783

    Yi Shengzhen, Huang Qiushi, Qi Runze, et al. Research progress of multilayer X-ray imaging optics for plasma diagnostics [J]. Optics and Precision Engineering, 2022, 30(21): 2783-2792. (in Chinese) doi:  10.37188/OPE.20223021.2783
    [5] 牛萍娟, 薛卫芳, 宁平凡, 等. 基于低维相变薄膜的显示器件光学性质的研究 [J]. 发光学报, 2016, 37(12): 1514-20. doi:  10.3788/fgxb20163712.1514

    Niu Pingjuan, Xue Weifang, Ning Pingfan, et al. Optical properties of display devices enabled by low-dimensional phase-change thin films [J]. Chinese Journal of Luminescence, 2016, 37(12): 1514-1520. (in Chinese) doi:  10.3788/fgxb20163712.1514
    [6] Huasong L, Lishuan W, Dandan L, et al. Numerical analysis of cone angle effect of optical thin films characteristics [J]. Acta Optica Sinica, 2014, 34(1): 0131003. doi:  10.3788/AOS201434.0131003
    [7] He Wenyan, Kong Mingdong, Ren Ge, et al. Influence of nonparallel beams on the spectral properties of the narrow-band filter [J]. Infrared and Laser Engineering, 2022, 51(8): 20210757. (in Chinese) doi:  10.3788/IRLA20210757
    [8] 朱美萍, 易葵, 郭世海, 等. 膜厚监控误差及监控片不均匀对膜厚监控的影响 [J]. 光学学报, 2006, 26(7): 1107-11.

    Zhu Meiping, Yi Kui, Guo Shihai, et al. Effect of thickness monitoring error and inhomogeneity of witness glass on film thickness monitoring [J]. Acta Optica Sinica, 2006, 26(7): 1107-1111. (in Chinese)
    [9] 顾培夫, 陆巍, 陈海星, 等. 膜厚监控系统的光谱宽度对窄带滤光片性能的影响 [J]. 光学学报, 2004, 24(2): 251-4. doi:  10.3321/j.issn:0253-2239.2004.02.024

    Gu Peifu, Lu Wei, Chen Haixing, et al. Effect of spectral width of thickness-monitoring system on performance of narrow-band filters [J]. Acta Optica Sinica, 2004, 24(2): 251-254. (in Chinese) doi:  10.3321/j.issn:0253-2239.2004.02.024
    [10] 冯仕猛, 田晨, 王宇兴. 入射光单色性与界面粗糙度对多层膜反射性能的不同影响 [J]. 光学学报, 2006, 26(12): 1892-5. doi:  10.3321/j.issn:0253-2239.2006.12.026

    Feng Shimeng. Effect of energy monochromaticity and interfacial roughness on multilayer reflectivity [J]. Acta Optica Sinica, 2006, 26(12): 1892-1895. (in Chinese) doi:  10.3321/j.issn:0253-2239.2006.12.026
    [11] Wu H, Wang P, Song J, et al. High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser [J]. Optics Express, 2018, 26(5): 6446-6455. doi:  10.1364/OE.26.006446
    [12] Liu W, Ma P, Zhou P, et al. Spectral property optimization for a narrow-band-filtered superfluorescent fiber source [J]. Laser Physics Letters, 2018, 15(2): 025103.
    [13] 范希智, 易迎彦, 陈清明, 等. 分析一维光子晶体的传输矩阵法与光学薄膜的菲涅耳系数矩阵法的等效性 [J]. 激光杂志, 2014, (7): 26-9.

    Fan Xizhi, Yi Yinyan, Chen Qinming, et al. On the equivalence of the transfer matrix method for investigating one dimensional photonic crystal with the Fresnel coefficient matrix method for analyzing optical thin film [J]. Laser Journal, 2014(7): 26-29. (in Chinese)
    [14] 杨立功, 黄弼勤, 叶辉, 等. 负折射率介质层中光波的相位和传输特性研究 [J]. 光学学报, 2004, 24(3): 388-92. doi:  10.3321/j.issn:0253-2239.2004.03.021

    Yang Ligong, Huang Biqin, Ye Hui, et al. Analysis of phase and transfer properties of optical waves in negative refractive index medium layers [J]. Acta Optica Sinica, 2004, 24(3): 388-392. (in Chinese) doi:  10.3321/j.issn:0253-2239.2004.03.021
    [15] 唐军, 杨华军, 徐权, 等. 传输矩阵法分析一维光子晶体传输特性及其应用 [J]. 红外与激光工程, 2010, 39(1): 76-80. doi:  10.3969/j.issn.1007-2276.2010.01.016

    Tang Jun, Yang Huajun, Xu Quan, et al. Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method [J]. Infrared and Laser Engineering, 2010, 39(1): 76-80. (in Chinese) doi:  10.3969/j.issn.1007-2276.2010.01.016
    [16] 吴子豪, 陈子阳, 蒲继雄, 等. 新型部分相干光束的产生及其相干特性 [J]. 光子学报, 2017, 46(5): 40-3.

    Wu Zihao, Chen Ziyang, Pu Jixiong, et al. Generation of a new kind partially coherent beam and its coherent properties [J]. Acta Photonica Sinica, 2017, 46(5): 0526002. (in Chinese)
    [17] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light [M]. Amsterdam: Elsevier, 2013.
    [18] Chen G, Tien C. Partial coherence theory of thin film radiative properties [J]. Journal of Heat Transfer-transactions of The Asme, 1992, 114: 636-643.
    [19] 潘继环, 苏安, 赵宏斌, 等. 对称双缺陷对光子晶体光传输特性的调制 [J]. 红外与激光工程, 2019, 48(S1): 152. doi:  10.3788/IRLA201948.S121001

    Pan Jihuan, Su An, Zhao Hongbin, et al. Modulation of photonic crystal optical transmission characteristics by symmetrical double defects [J]. Infrared and Laser Engineering, 2019, 48(S1): S121001. (in Chinese) doi:  10.3788/IRLA201948.S121001
    [20] 谭天亚, 黄建兵, 占美琼, 等. 三硼酸锂晶体上1064 nm, 532 nm, 355 nm三倍频增透膜的设计 [J]. 光学学报, 2007, 27(7): 1327-32.

    Tan Tianya, Huang Jianbin, Zhan Meiqiong, et al. Design of 1 064 nm, 532 nm, 355 nm frequency-tripled antireflection coating for LBO [J]. Acta Optica Sinica, 2007, 27(7): 1327. (in Chinese)
    [21] 尹增谦, 武臣, 王永杰, 等. 光谱线型函数的四种形式及其变换关系 [J]. 光谱学与光谱分析, 2012, 32(5): 1189-93.

    Yin Zengqian, Wu Chen, Wang Yongjie, et al. Four styles of spectral line shape function and their transformation relation [J]. Spectroscopy and Spectral Analysis, 2012, 32(5): 1189. (in Chinese)
    [22] 马维光, 谭巍, 赵刚, 等. 噪声免疫腔增强光外差分子饱和光谱线型的理论分析 [J]. 光谱学与光谱分析, 2014, (8): 2180-4.

    Ma Weiguang, Tan Wei, Zhao Gang, et al. Theoretical analysis of saturated spectral line shape of noise immune cavity enhanced optical heterodyne molecular spectroscopy [J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2180. (in Chinese)
  • [1] 傅杨奥骁, 江涛, 刘庆宗, 丁明松, 李鹏, 董维中, 高铁锁, 许勇.  高超声速飞行器热喷高温燃气红外辐射特性数值模拟 . 红外与激光工程, 2022, 51(10): 20220023-1-20220023-10. doi: 10.3788/IRLA20220023
    [2] 何文彦, 孔明东, 任戈, 魏铭.  非平行光束对窄带滤光片光谱性能的影响 . 红外与激光工程, 2022, 51(8): 20210757-1-20210757-7. doi: 10.3788/IRLA20210757
    [3] 刘卫平, 吕玉伟, 吴丽雄, 韦成华, 王家伟, 韩永超, 张爽.  玻璃钢激光烧蚀碳化致微波传输衰减的数值模拟 . 红外与激光工程, 2021, 50(12): 20210137-1-20210137-7. doi: 10.3788/IRLA20210137
    [4] 李紫慧, 王续跃.  层合板激光往复扫描弯曲中翘曲变形数值模拟 . 红外与激光工程, 2018, 47(12): 1206008-1206008(8). doi: 10.3788/IRLA201847.1206008
    [5] 李丹梦, 金伟其, 李力, 鲁啸天, 裘溯.  水下运动目标的水面波纹数值模拟及分析 . 红外与激光工程, 2018, 47(11): 1126004-1126004(8). doi: 10.3788/IRLA201847.1126004
    [6] 彭进, 张文洁, 王星星, 郭国全, 张芙蓉.  焊丝熔化填充方式对激光焊接熔池影响的数值模拟 . 红外与激光工程, 2018, 47(3): 306005-0306005(7). doi: 10.3788/IRLA201847.0306005
    [7] 李紫慧, 王续跃.  金属复合板激光弯曲过程中翘曲变形数值模拟 . 红外与激光工程, 2018, 47(5): 506004-0506004(7). doi: 10.3788/IRLA201847.0506004
    [8] 李盾, 宁禹, 吴武明, 孙全, 杜少军.  旋转相位屏的动态大气湍流数值模拟和验证方法 . 红外与激光工程, 2017, 46(12): 1211003-1211003(7). doi: 10.3788/IRLA201746.1211003
    [9] 于学丽, 丁双红, 贾海旭, 辛磊.  主动调Q腔内和频拉曼激光器的数值模拟 . 红外与激光工程, 2017, 46(9): 906001-0906001(7). doi: 10.3788/IRLA201746.0906001
    [10] 郭兴旺, 管和清, 刘颖韬, 唐佳.  半透明材料红外热像检测的光谱特性和光源选择 . 红外与激光工程, 2017, 46(1): 104001-0104001(9). doi: 10.3788/IRLA201746.0104001
    [11] 高铁锁, 江涛, 丁明松, 董维中, 刘庆宗.  高超声速拦截弹绕流红外辐射特性数值模拟 . 红外与激光工程, 2017, 46(12): 1204001-1204001(8). doi: 10.3788/IRLA201746.1204001
    [12] 刘家琛, 唐鑫, 巨永林.  微型红外探测器组件快速冷却过程数值模拟分析 . 红外与激光工程, 2015, 44(3): 816-820.
    [13] 戴毅斌, 樊玉杰, 李明尧, 刘晓宇, 蒋彭胜, 殷开婷.  多点激光微冲击成形的数值模拟研究 . 红外与激光工程, 2015, 44(S1): 50-56.
    [14] 常金勇, 强希文, 胡月宏, 宗飞, 李志朝, 封双连.  激光传输光束抖动效应的数值模拟 . 红外与激光工程, 2015, 44(S1): 46-49.
    [15] 张金玉, 孟祥兵, 杨正伟, 王冬冬, 陶胜杰.  红外锁相法涂层测厚数值模拟与分析 . 红外与激光工程, 2015, 44(1): 6-11.
    [16] 许兆美, 刘永志, 周建忠, 蒋素琴, 王庆安, 汪通, 洪宗海.  基于生死单元的激光铣削温度场数值模拟与验证 . 红外与激光工程, 2014, 43(6): 1755-1760.
    [17] 陈林, 杨立, 范春利, 吕事桂, 石宏臣.  线性调频激励的红外无损检测及其数值模拟 . 红外与激光工程, 2014, 43(5): 1385-1389.
    [18] 孙杜娟, 胡以华, 李乐.  气溶胶“沉降—扩散”联合动态数值模拟 . 红外与激光工程, 2014, 43(2): 449-453.
    [19] 崔文达, 杜少军.  角谱传输数值模拟中参数优化分析 . 红外与激光工程, 2014, 43(9): 2935-2940.
    [20] 唐力铁, 于志闯, 赵乐至, 尹飞, 郭士波, 谈斌.  DF/HF化学激光器喷管总压损失的数值模拟 . 红外与激光工程, 2013, 42(5): 1194-1197.
  • 加载中
图(7)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  12
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-13
  • 修回日期:  2023-10-30
  • 网络出版日期:  2023-12-22
  • 刊出日期:  2023-12-22

多层膜光学元件对光束线宽响应特性的研究

doi: 10.3788/IRLA20230574
    作者简介:

    杨仕琪,男,硕士生,主要从事光学薄膜测试方面的研究

基金项目:  国家自然科学基金项目(61975150)
  • 中图分类号: O484

摘要: 多层膜光学元件的设计是基于理想的单色光进行的,然而光源发出的光束均存在光谱线宽,在非单色光条件下工作,元件的光学特性会偏离理论值。为了分析光束线宽对多层膜光学元件的光学特性影响,首先,基于薄膜辐射特性的部分相干理论,提出了准单色光束入射条件下多层膜光学特性计算方法;其次,通过数值模拟实验研究了光束线宽对窄带滤光片光学特性的影响。研究结果表明:随着线宽增大,滤光片透射通带的矩形度逐渐降低,半高全宽先降低后增大,其在滤光片的理论半高全宽附近取得最小值;光谱线型主要改变透射通带的透射率,对于透射谱线的矩形度以及半高全宽影响较小;为了保证窄带滤光片的通带形状,入射光束的线宽应当小于滤光片透射谱线的理论半高全宽的一半,光谱线型应当趋近于矩形线型函数。

English Abstract

    • 多层膜是现代光学系统中实现光束能量调控的重要光学元件[1-2]。多层膜光学元件的性能直接决定了光学系统的性能[3-5]。在窄带滤光片等多层膜光学元件的设计理论中,通常假设入射光为单色光[6-7],由于实际光束的光谱线宽,导致多层膜光学元件的光学响应与设计结果产生偏离,甚至导致光学性能完全失效[8-10]。因此,需要考虑准单色光束的频谱特征[11-12](中心频率、线宽以及光谱线型)对多层膜光学元件性能的影响。

      针对光束频谱特征对多层膜光学元件的光学特性影响,研究人员已经开展了相关研究。顾培夫[9]等人研究发现,由于膜厚监控系统中控制光存在一定的光谱线宽,使得实际的监控信号偏离理想的单色光情况下的监控信号,导致产生膜厚误差影响膜系性能。为了定量分析光束的线宽对于多层膜光学特性的影响,冯仕猛[10]利用数学卷积积分,理论上推导了在入射光不同线宽条件下多层膜反射率的计算公式。何文彦[7]等人基于卷积模型,实验验证了测试仪器的光谱线宽对于窄带滤光片光谱性能测试的影响。卷积模型中利用传输矩阵法计算获得多层膜的光谱函数,表明该模型在处理膜层内光束的干涉叠加时仍然采用单色光的假设条件[13-15]。然而,准单色光之间的干涉效应以及计算方法显著区别于单色光[16-17],限制了卷积模型的应用。Chen G[18]等人建立了薄膜辐射特性的部分相干理论,利用归一化功率谱密度函数定量地表征光束的线宽以及光谱线型,基于部分相干理论计算准单色光束的辐照度以及干涉叠加,但是仅讨论了单层膜的光谱函数,并没有将其拓展至多层膜的情形。目前仍然缺乏多层膜光学元件对准单色光束频谱特征响应特性的计算方法。

      文中提出了准单色光入射条件下多层膜光学特性计算方法,基于数值模拟实验,对比不同的光谱线型条件下窄带滤光片对光束线宽的响应特性,分析了光束的线宽以及光谱线型对滤光片通带形状的影响,并且进一步讨论了基底厚度对滤光片透射性能的影响,给出了窄带滤光片透射通带无畸变需满足的条件。研究结果对于窄带滤光片的设计与应用以及深入理解光束与薄膜相互作用的过程具有参考价值。

    • 传输矩阵法[14-15, 19]与矢量法[20]是基于理想的单色平行光假设建立的薄膜光学特性计算方法。然而在理想的假设条件下,模型忽略了薄膜对光束频谱线宽的响应特性。因此,需要将理想条件修正为准单色平行光,建立新型光束与薄膜相互作用模型。

      Chen G等人建立了准单色光入射条件下的单层膜光学特性计算方法,其关键在于利用部分相干理论计算薄膜界面处准单色光场的辐照度,并且引入归一化功率谱密度函数来定量地描述入射光束的线宽及其频谱分布。具体方法如下:首先,由波动光学原理推导获得透射光场以及反射光场与入射光场之间数量关系;其次,基于准单色光场的功率谱密度函数以及部分相干理论计算其辐照度;最后,利用光场之间的数量关系以及辐照度计算公式推导出薄膜的透射率、反射率以及吸收率公式。

      在实际应用中,研究人员更加关注多层膜的光学特性,准单色光入射条件下多层膜光学特性计算方法可以由单层膜方法推广获得。如图1所示,假设基底表面上的多层膜共有k层,入射介质折射率为N1,基底折射率为NS,第j层薄膜的折射率为Nj,厚度为Lj

      图  1  多层膜中的电磁波分布

      Figure 1.  Electromagnetic wave distribution in multilayer films

      对第k层薄膜进行分析,该膜层界面处光场的分布情形与单层薄膜相同,即下表面仅有出射光场,没有来自基底的入射光场;上表面处有入射光场以及反射光场。基于薄膜辐射特性的部分相干理论[18]获得Tk−1Rk−1,其中TkRk以及rk取决于基底与第k层膜的光学常数。由等效界面理论可知,第k层薄膜与基底可以由第k−1界面等效,此时对于第k−1层薄膜来说,k−1界面处同样仅有出射光场。因此,重复上述步骤,由基底表面向入射表面递归计算,记录中间变量Tj−1Rj−1以及rj,最终获得多层膜整体的透射率T1以及反射率R1

      多层膜透射率公式如下:

      $$ {T_j} = \frac{{{n_{j + 2}}}}{{{n_j}}}\frac{{{T_{j,j + 1}}{T_{j + 1}}{\beta _j}}}{{1 - 2{Re} (r_{j + 1,j}^*{{{γ }}_0}(\tau ;j)){{\left( {{R_{j + 1}}{\beta _j}{{\beta '}_j}} \right)}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} + {R_{j + 1,k}}{R_{j + 1}}{\beta _j}{{\beta '}_j}}} $$ (1)

      式中:

      $$ {\beta _j} = \exp \left( - \frac{{4\pi {k_j}}}{\lambda }{L_j}\right) $$ (2)

      多层膜反射率公式如下:

      $$ \begin{split} & R_j=R_{j, j+1}+\left(T_{j+1}+2 {Re}\left\{\frac{r_{j, j+1} t_{j+1, j}^*}{t_{j, j+1}}\left[\frac{\gamma_0(\tau ; j)}{\left(R_{j+1} \beta_j \beta_j^{\prime}\right)^{1 / 2}}-r_{j+1, j}\right]\right\}\right) \times \\ &\frac{T_{j, j+1} R_{j+1} \beta_j \beta_j^{\prime}}{1-2 {Re}\left(r_{j+1, j}^* \gamma_0(\tau ; j)\right)\left(R_{j+1} \beta_j \beta_j^{\prime}\right)^{1 / 2}+R_{j+1, j} R_{j+1} \beta_j \beta_j^{\prime}} \\ \end{split} $$ (3)

      公式(1)和公式(3)中:

      $$ \gamma_0(\tau , j)=r_{j+1, j}\left(R_{j+1} \beta_j \beta_j^{\prime}\right)^{1 / 2}+\frac{\displaystyle\int_0^{\infty}\left[t_{j, j+1}\left(-r_{j, j+1}+r_j\right)^* / t_{j+1, j}^*\right] S(v) {\rm{d}} v}{\left(\displaystyle\int_0^{\infty}\left|\left(1-r_{j, j+1} r_j\right) / t_{j+1, j}\right|^2 S(v) {\rm{d}} v \displaystyle\int_0^{\infty}\left|\left(-r_{j, j+1}+r_j\right) / t_{j+1, j}\right|^2 S(v) {\rm{d}} v\right)^{1 / 2}}\\ $$ (4)

      式中:${t_{i j}}$为界面i处的菲涅耳振幅透射系数,方向为由i层入射至j层;${r_{i j}}$为界面i处的菲涅耳振幅反射系数,方向为由i层入射至j层;$ {r_i} $为i界面处,从第i至最后一层多层膜振幅反射系数;${R_{i j}}$为界面i处的菲涅耳振幅反射系数的平方,方向为由i层入射至j层;${T_{i j}}$为界面i处的菲涅耳振幅透射系数的平方,方向为由j层入射至i层;${R_i}$为界面i处至基底的多层膜反射率;${T_i}$为界面i处至基底的多层膜透射率;$N = n - ik$为薄膜的复折射率,n为折射率,k为消光系数。

      公式(4)中,入射光场${E_i}(v)$的归一化功率谱密度函数$S(v)$为:

      $$ S(v) = \frac{{{E_i}(v)E_i^*(v)}}{{\displaystyle\int_0^\infty {{E_i}(v)E_i^*(v){\rm{d}}v} }} $$ (5)

      在之前的研究中,为了简化分析的复杂度,常利用一个理想化的矩形线型函数表征准单色光束的功率谱密度分布[7, 10]

      $$ S(\nu ) = \left\{ \begin{gathered} \frac{1}{{\Delta v}}\;\;{\text{ }}{\nu _0} - \frac{{\Delta \nu }}{2} < \nu < {\nu _0} - \frac{{\Delta \nu }}{2} \\ 0\;\;\;\;\;\;\;\;{\text{ other}} \\ \end{gathered} \right. $$ (6)

      然而,矩形线型函数重点考虑了准单色光束线宽特征,却忽略了光谱能量的分布特征。激光是一种广泛应用的相干光源,其出射光束的归一化功率谱密度函数有两种基本线型分布:高斯线型和洛伦兹线型[21-22],这两种线型函数涵盖了光束的线宽以及光谱能量分布特征。因此,有必要对上述三种线型函数进行对比分析,进一步获得光束线宽与光谱线型对多层膜光学元件的光学特性的影响。

      高斯线型函数如下:

      $$ S(v) = \dfrac{{2\sqrt {\ln 2} }}{{\sqrt \pi \Delta v}}\exp \left[ { - {{\left( {2\sqrt {\ln 2} \dfrac{{v - {v_0}}}{{\Delta v}}} \right)}^2}} \right] $$ (7)

      洛伦兹线型函数如下:

      $$ S(v) = \frac{{2{{\left( {\pi \Delta v} \right)}^{ - 1}}}}{{1 + \left( {2 ({{v - {v_0}}})/{{\Delta v}}} \right)}} $$ (8)

      式中:${\nu _0}$为谱线的中心频率;$\Delta \nu $为谱线的线宽。$S(v)$也被称为光谱线型。线宽是指谱线的宽度,共有两种表达式,分别对应于波长谱以及频率谱,它们满足如下关系:

      $$ \Delta \lambda = \dfrac{c}{{\nu _0^2}}\Delta v $$ (9)

      在下文中,光束线宽是指其波长谱表达式$\Delta \lambda $。

      由上述分析可知,利用准单色光入射条件下多层膜光学特性计算方法计算多层膜元件的光学特性,需要获得以下参数:光束的频谱特征,包含中心频率、线宽与线型函数;多层膜的结构,包含膜层的厚度与光学常数。区别于传输矩阵法中要求膜层厚度是必须小于光束的相干长度,该方法对于膜层的厚度没有限制条件。

    • 窄带滤光片是激光技术中重要的光学元件,在光谱探测、激光器、光纤通信等领域有着广泛的应用。高性能的窄带滤光片的透射性能对于入射光束的线宽以及光谱线型的改变有着敏感的响应。因此,选取具有窄带宽、高矩形度以及低通带波纹等特征的窄带滤光片的透射特性进行数值模拟实验。

      窄带滤光片结构为“窄带滤光片膜系|基底|增透膜系”构型。为了实现矩形窄带通、通带波纹小的滤光性能,滤光片膜系一般采用全介质的多腔Fabry-Perot干涉结构。

      窄带滤光片的结构为:Air| 0.55 L 1.72 H L (HL)^5 2 H (LH)^5 L (HL)^5 6 H (LH)^5 L (HL)^5 2 H (LH)^5 |Al2O3| 1.45 H 0.88 L |Air。中心波长为1064 nm,H和L分别为Ta2O5和SiO2,基底材料为Al2O3

      光束正入射时,窄带滤光片膜系理论透射曲线如图2所示,其峰值透射率(Tmax)大于99%,透射通带的中心波长为1064 nm,通带波形无塌陷,半高全宽(Full Width at Half Maximum, FWHM)为4.52 nm,矩形度(Rectangle Degree, RD)为0.66,其中RD是指透射率下降为Tmax的90%时带宽值与FWHM的比值。

      图  2  窄带滤光片膜系理论透射谱线

      Figure 2.  Theoretical transmission spectrum of narrow-band filter

      入射光束线宽以及基底厚度的变化均会影响基底内部光束的相干状态,进而导致滤光片性能偏离理论值。因此,数值实验将围绕基底厚度以及光束线宽对于窄带滤光片透射性能的影响展开。首先,在矩形线型、高斯线型以及洛伦兹线型三种光谱线型条件下,基于准单色光入射条件下多层膜光学特性计算方法,计算获得窄带滤光片透射曲线随光束线宽的变化关系,分析并讨论入射光束的线宽以及光谱线型对窄带滤光片膜系透射通带的影响;进一步,在光束的光谱线型为高斯线型条件下,研究光束线宽与基底厚度对于窄带滤光片透射通带的影响。

    • 光束正入射条件下,窄带滤光片膜系透射曲线随入射光束的线宽与线型的变化如图3所示。随着光束线宽增大,三种光谱线型的多层膜透射光谱形状相对于与理论透射光谱有着明显的变化,但仍体现出选通的特性。

      图  3  光束线宽为 (a) 0.5 nm、(b) 2.5 nm、(c) 4.5 nm、(d) 9.0 nm时,高斯线型、洛伦兹线型与矩形线型的窄带滤光片膜系透射谱线对比

      Figure 3.  Comparison of transmission spectra of narrowband filter with Gaussian, Lorentzian and rectangular line-shapes for beam linewidths of (a) 0.5 nm, (b) 2.5 nm, (c) 4.5 nm, and (d) 9.0 nm

      图4所示,高斯线性、洛伦兹线型以及矩形线型条件下,随着线宽增大,FWHM先降低后增大,最小值分别为3.85 nm、4.08 nm以及3.74 nm,取得最小值的线宽值为4.5 nm、2.5 nm以及5.5 nm。对于透射谱线的RD,三种线型条件下有着相同的变化趋势。线宽小于4 nm时,随着线宽增大,RD迅速下降,线宽大于4 nm时,RD的下降速度变缓。不同线型条件下,透射谱线的Tmax随线宽的变化关系有着显著的区别。对于高斯线型,线宽小于2 nm时,随着线宽增大,Tmax缓慢下降,线宽大于2 nm时,Tmax迅速下降;对于矩形线型,线宽小于3 nm时,随着线宽增大,Tmax缓慢下降,线宽大于3 nm时,Tmax迅速下降;对于洛伦兹线型,线宽小于6 nm时,随着线宽增大,Tmax迅速下降,线宽大于6 nm时,Tmax缓慢下降。

      图  4  高斯线型、洛伦兹线型与矩形线型条件下,(a)中心波长、(b)透射通带峰值透射率、(c)半高宽度以及(d)矩形度随光束线宽的变化曲线

      Figure 4.  The curves of (a) central wavelength, (b) peak transmittance of transmission band, (c) full width at half maximum and (d) rectangle degree versus beam linewidth under Gaussian, Lorentzian and rectangular line-shape conditions

      通过上述分析可知,光束线宽以及线型对于谱线的形状有着重要的影响,线宽增大会导致透射率降低以及RD变差,适当选取线宽的取值,FWHM能获得最小值;光谱线型决定了透射率、FWHM和RD随线宽的具体变化关系。

    • 在入射光束光谱为高斯线型且线宽一定的条件下,滤光片透射谱线随基底厚度的变化情况如图5所示。线宽为0.5 nm时,随着基底厚度增大,透射通带的透射率逐渐下降;当基底厚度小于0.7 mm时,通带形状出现塌陷且变化无规律;当基底厚度大于0.7 mm时,透射通带形状无塌陷,透射通带谱线整体下降。线宽为2.5 nm时,随着基底厚度增大,滤光片透射通带波纹无塌陷,透射通带谱线整体先增大后减小,在基底厚度为0.2 mm时,谱线整体有最大值。线宽为4.5 nm以及9.0 nm时,随着基底厚度增大,透射通带形状无塌陷,透射通带谱线整体下降。

      图  5  高斯线型条件下,线宽为(a) 0.5 nm、(b) 2.5 nm、(c) 4.5 nm、(d) 9.0 nm时,不同基底厚度的滤光片整体透射谱线对比图

      Figure 5.  Comparison of the overall transmission spectra of filters with different substrate thicknesses for linewidths of (a) 0.5 nm, (b) 2.5 nm, (c) 4.5 nm, and (d) 9.0 nm under the Gaussian line-shape condition

      滤光片中基底在中心波长处的透射谱线随基底厚度与线宽变化曲线如图6所示。基底的上下表面均有膜层覆盖,结构为“Ta2O5| Al2O3 |Ta2O5”。在1064 nm处Ta2O5折射率N=2.06−4.23×10−6i;单晶Al2O3基底的折射率N=1.74−2.16×10−7i

      图  6  高斯线型条件下,线宽为(a) 0.5 nm;(b) 2.5 nm;(c) 4.5 nm;(d) 9.0 nm时,单层基底1064 nm处透射率随基底厚度的变化曲线

      Figure 6.  Variation curves of transmittance at 1064 nm with substrate thickness for monolayer substrates with linewidths of (a) 0.5 nm; (b) 2.5 nm; (c) 4.5 nm, and (d) 9.0 nm under the Gaussian line-shape condition

      入射光束为高斯线型、线宽一定时,随着基底厚度增大,基于部分相干方法的透射曲线逐渐趋近于几何光学曲线。随着线宽增大,部分相干曲线向几何光学曲线的演化速度加快。如图6中曲线所示,光束线宽为0.5 nm,基底内光束的相干长度约为0.7 mm;线宽为2.5 nm时,基底内光束的相干长度约为0.2 mm;线宽为4.5 nm及9.0 nm时,基底内光束的相干长度小于0.1 mm。

      图6可知,因为基底材料的消光系数不为0,随着基底厚度增大,图5中滤光片透射通带谱线透射率下降。图5(a)中通带波纹出现塌陷以及图5(b)中透射通带谱线先增大后减小的现象,则是因为随着光束线宽增大,基底内光束的相干长度降低。当基底厚度小于相干长度时,基底与膜系内的光束发生相干叠加,透射率极值位置发生改变,导致滤光片透射谱线通带内出现塌陷。

      窄带滤光片透射谱线Tmax以及FWHM随基底厚度与线宽的变化关系如图7所示。

      图7(a)可知,四种光束线宽条件下,随着基底厚度增大,Tmax逐渐降低,且下降幅度不超过0.8%,这取决于基底的消光系数与厚度,基底消光系数越小,下降的幅度越小。当基底厚度一定时,随着线宽增大,Tmax显著降低。对图7(b)分析可知,线宽一定时,随着基底厚度增大,FWHM基本保持不变。厚度保持不变,随着线宽增大,FWHM先增大后降低。由此可知,光束的线宽对于窄带滤光片的峰值透射率、透射谱线的半高全宽及其整体形状影响显著,基底厚度主要影响透射谱线的通带形状。

      由上述分析可知,为了保证窄带滤光片透射通带无畸变,入射光束和基底都应满足一定条件:对于入射光束,线宽小于滤光片带宽,功率谱密度分布趋近于矩形线型即光束线宽远小于中心波长;对于基底,厚度应当大于相干长度,且消光系数要小。

      图  7  高斯线型条件下,线宽为0.5 nm、2.5 nm、4.5 nm和9.0 nm时,(a)透射谱线Tmax以及(b) FWHM随基底厚度的变化曲线

      Figure 7.  Gaussian line-shape conditions with linewidths of 0.5 nm, 2.5 nm, 4.5 nm, and 9.0 nm, (a) Tmax, and (b) FWHM versus substrate thickness curves

    • 文中首先基于薄膜辐射特性的部分相干理论建立了准单色光入射条件下多层膜光学特性计算方法,其次利用数值实验研究了光束线宽以及基底厚度对窄带滤光片光学性能的影响。研究结果表明:光束的线宽以及光谱线型对窄带滤光片的响应特性有着显著的影响。光束线宽小于窄带滤光片的理论FWHM时,随着线宽增大,通带中心波长向长波方向移动,RD迅速降低,通带形状由矩形退化为三角形,谱线的FWHM逐渐降低;光束线宽大于窄带滤光片的理论FWHM时,RD基本保持不变,谱线的FWHM缓慢增大。光谱线型对于透射通带的透射率有显著影响。对于矩形线型与高斯线型,线宽小于窄带滤光片的理论FWHM值一半时,Tmax保持不变;线宽大于窄带滤光片的理论FWHM值一半时,Tmax迅速下降。对于洛伦兹线型,线宽小于窄带滤光片的理论FWHM值时,Tmax迅速下降;线宽大于窄带滤光片的理论FWHM值时,Tmax保持不变。

      为了保证窄带滤光片的通带形状,入射光束应当满足以下条件:光束线宽小于滤光片的理论FWHM的一半,光谱的线型函数趋近于矩形分布。该研究对相干光学系统中的多层膜光学元件的设计与应用具有参考价值。

参考文献 (22)

目录

    /

    返回文章
    返回