[1] Maiman T H. Stimulated optical emission in fluorescent solids. I. Theoretical considerations [J]. Physical Review, 1961, 123(4): 1145-1150. doi:  10.1103/PhysRev.123.1145
[2] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics [J]. Physical Review Letters, 1961, 7(4): 118-119. doi:  10.1103/PhysRevLett.7.118
[3] Haken H. Analogy between higher instabilities in fluids and lasers [J]. Physics Letters A, 1975, 53(1): 77-78. doi:  10.1016/0375-9601(75)90353-9
[4] Xu Y P, Zhang M J, Zhang L, et al. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced distributed feedback [J]. Optics Letters, 2017, 42(20): 4107-4110. doi:  10.1364/OL.42.004107
[5] Wang D M, Wang L S, Guo Y Y, et al. Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser [J]. Optics Express, 2019, 27(3): 3065-3073. doi:  10.1364/OE.27.003065
[6] Jiang N, Wang C, Xue C P, et al. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens [J]. Optics Express, 2017, 25(13): 14359-14367. doi:  10.1364/OE.25.014359
[7] Zhao Q C, Yin H X. Performance analysis of orthogonal optical chaotic division multiplexing utilizing semiconductor lasers [J]. Optics and Laser Technology, 2013, 47: 208-213. doi:  10.1016/j.optlastec.2012.08.018
[8] Oliver N, Soriano M C, Sukow D W, et al. Fast random bit generation using a chaotic laser: approaching the information theoretic limit [J]. IEEE Journal of Quantum Electronics, 2013, 49(11): 910-918. doi:  10.1109/JQE.2013.2280917
[9] Lin F Y, Liu J M. Chaotic lidar [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 991-997. doi:  10.1109/JSTQE.2004.835296
[10] Wang Y H, Zhang M J, Zhang J Z, et al. Millimeter-Level-Spatial-Resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser [J]. Journal of Lightwave Technology, 2019, 37(15): 3706-3712. doi:  10.1109/JLT.2019.2916801
[11] Urban P J, Getaneh A, von der Weid J P, et al. Detection of fiber faults in passive optical networks [J]. Journal of Optical Communications and Networking, 2013, 5(11): 1111-1121. doi:  10.1364/JOCN.5.001111
[12] Zhang M J, Liu T G, Wang A B, et al. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser [J]. Optics Letters, 2011, 36(6): 1008-1010. doi:  10.1364/OL.36.001008
[13] Argyris A, Hamacher M, Chlouverakis K E, et al. Photonic integrated device for chaos applications in communications [J]. Physical Review Letters, 2008, 100(19): 194101. doi:  10.1103/PhysRevLett.100.194101
[14] Sasaki T, Kakesu I, Mitsui Y, et al. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution [J]. Optics Express, 2017, 25(21): 26029. doi:  10.1364/OE.25.026029
[15] Chlouverakis K E, Argyris A, Bogris A, et al. Hurst exponents and cyclic scenarios in a photonic integrated circuit [J]. Physical Review E, 2008, 78(6): 066215. doi:  10.1103/PhysRevE.78.066215
[16] Toomey J P, Kane D M, McMahon C, et al. Integrated semiconductor laser with optical feedback: transition from short to long cavity regime [J]. Optics Express, 2015, 23(14): 18754-18762. doi:  10.1364/OE.23.018754
[17] Toomey J P, Argyris A, McMahon C, et al. Time-scale independent permutation entropy of a photonic integrated device [J]. Journal of Lightwave Technology, 2017, 35(1): 88-95. doi:  10.1109/JLT.2016.2626387
[18] Wu J G, Zhao L J, Wu Z M, et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip [J]. Optics Express, 2013, 21(20): 23358. doi:  10.1364/OE.21.023358
[19] Yu L, Lu D, Pan B, et al. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation [J]. Journal of Lightwave Technology, 2014, 32(20): 3595-3601. doi:  10.1109/JLT.2014.2320371
[20] Bauer S, Brox O, Kreissl J, et al. Nonlinear dynamics of semiconductor lasers with active optical feedback [J]. Physical Review E, 2004, 69(2): 016206.
[21] Pan B W, Lu D, Zhao L J. Broadband chaos generation using monolithic dual-mode laser with optical feedback [J]. IEEE Photonics Technology Letters, 2015, 27(23): 2516-2519. doi:  10.1109/LPT.2015.2474357
[22] Yin X M, Zhong Z Q, Zhao L J, et al. Wide bandwidth chaotic signal generation in a monolithically integrated semiconductor laser via optical injection [J]. Optics Communications, 2015, 355: 551-557. doi:  10.1016/j.optcom.2015.07.028
[23] Zhu W Q, Wu Z M, Zhong Z Q, et al. Dynamics of a monolithically integrated semiconductor laser under optical injection [J]. IEEE Photonics Technology Letters, 2015, 27(20): 2119-2122. doi:  10.1109/LPT.2015.2453977
[24] Qi H F, Chen G C, Lu D, et al. A monolithically integrated laser-photodetector chip for on-chip photonic and microwave signal generation [J]. Photonics, 2019, 6(102).
[25] Harayama T, Sunada S, Yoshimura K, et al. Fast nondeterministic random-bit generation using on-chip chaos lasers [J]. Physical Review A, 2011, 83(3): 031803. doi:  10.1103/PhysRevA.83.031803
[26] Dou X Y, Yin H X, Tang C R, et al. Structure design and performance simulation on monolithic integrated chaotic-optical transmitter with photonic crystal waveguide in external cavity [J]. Optik, 2014, 125(15): 3961-3965. doi:  10.1016/j.ijleo.2014.01.151
[27] Zhang M J, Xu Y H, Zhao T, et al. A hybrid integrated short-external-cavity chaotic semiconductor laser [J]. IEEE Photonics Technology Letters, 2017, 29(21): 1911-1914. doi:  10.1109/LPT.2017.2756906
[28] Zhang M J, Niu Y N, Zhao T, et al. Chaos generation by a hybrid integrated chaotic semiconductor laser [J]. Chinese Physics B, 2017, 27(5): 126-134.
[29] Tronciu V Z, Mirasso C R, Colet P, et al. Chaos generation and synchronization using an integrated source with an air gap [J]. IEEE Journal of Quantum Electronics, 2010, 46(12): 1840-1846. doi:  10.1109/JQE.2010.2049642
[30] Tronciu V Z, Mirasso C R, Colet P. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity [J]. Journal of Physics B-Atomic Molecular and Optical Physics, 2008, 41(15): 155401. doi:  10.1088/0953-4075/41/15/155401
[31] Sunada S, Harayama T, Arai K, et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide [J]. Optics Express, 2011, 19(7): 5713-5724. doi:  10.1364/OE.19.005713
[32] Sunada S, Fukushima T, Shinohara S, et al. A compact chaotic laser device with a two-dimensional external cavity structure [J]. Applied Physics Letters, 2014, 104(24): 241105. doi:  10.1063/1.4883636
[33] Ma X W, Huang Y Z, Long H, et al. Experimental and theoretical analysis of dynamical regimes for optically injected microdisk lasers [J]. Journal of Lightwave Technology, 2016, 34(22): 5263-5269. doi:  10.1109/JLT.2016.2599582
[34] Wang Y X, Jia Z W, Gao Z S, et al. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback [J]. Optics Express, 2020, 28(12): 18507-18515. doi:  10.1364/OE.395434
[35] Tager A A, Elenkrig B B. Stability regimes and high-frequency modulation of laser diodes with short external cavity [J]. IEEE Journal of Quantum Electronics, 1993, 29(12): 2886-2890. doi:  10.1109/3.259402
[36] Tager A A, Petermann K. High-frequency oscillations and self-mode locking in short external-cavity laser diodes [J]. IEEE Journal of Quantum Electronics, 1994, 30(7): 1553-1561. doi:  10.1109/3.299487
[37] Guo X X, Xiang S Y, Zhang Y H, et al. High speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(5): 101109.
[38] Verschaffelt G, Khoder M, Sande G V D. Random number generator based on an integrated laser with on-chip optical feedback [J]. Chaos, 2017, 27(11): 114310. doi:  10.1063/1.5007862
[39] Vaughan M P, Henning I, Adams M J, et al. Mutual optical injection in coupled DBR laser pairs [J]. Optics Express, 2009, 17(3): 2033-2041. doi:  10.1364/OE.17.002033
[40] Cemlyn B R, Labukhin D, Henning I D, et al. Dynamic transitions in a photonic integrated circuit [J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 261-268. doi:  10.1109/JQE.2011.2169652
[41] Liu D, Sun C Z, Xiong B, et al. Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation [J]. Optics Express, 2013, 21(2): 2444-2451. doi:  10.1364/OE.21.002444
[42] Liu D, Sun C Z, Xiong B, et al. Locked and unlocked behavior of integrated mutually coupled lasers with ultra-short delay [J]. IEEE International Semiconductor Laser Conference, 2014: 117-118.
[43] Liu D, Sun C Z, Xiong B, et al. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay [J]. Optics Express, 2014, 22(5): 5614-5622. doi:  10.1364/OE.22.005614
[44] Ohara S, Dal Bosco A K, Ugajin K, et al. Dynamics-dependent synchronization in on-chip coupled semiconductor lasers [J]. Physical Review E, 2017, 96(3): 032216. doi:  10.1103/PhysRevE.96.032216
[45] Chai M M, Qiao L J, Zhang M J, et al. Simulation of monolithically integrated semiconductor laser subject to random feedback and mutual injection [J]. IEEE Journal of Quantum Electronics, 2020, 56(5): 1-8.
[46] Zhang L M, Pan B W, Chen G C, et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser [J]. Applied Optics, 2017, 56(4): 1253-1256. doi:  10.1364/AO.56.001253
[47] Li M W, Zhang X C, Zhang J Z, et al. Long-range and high-precision fault measurement based on integrated short-external-cavity chaotic semiconductor laser [J]. IEEE Photonics Technology Letters, 2019, 31(16): 1389-1392. doi:  10.1109/LPT.2019.2928418
[48] Argyris A, Deligiannidis S, Pikasis E, et al. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit [J]. Optics Express, 2010, 18(18): 18763-18768. doi:  10.1364/OE.18.018763
[49] Zhang L M, Pan B W, Chen G C, et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser [J]. Scientific Reports, 2017, 7: 45900. doi:  10.1038/srep45900
[50] Takahashi R, Akizawa Y, Uchida A, et al. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation [J]. Optics Express, 2014, 22(10): 11727. doi:  10.1364/OE.22.011727
[51] Ugajin K, Terashima Y, IwakawaK, et al. Real-time fast physical random number generator with a photonic integrated circuit [J]. Optics Express, 2017, 25(6): 6511-6523. doi:  10.1364/OE.25.006511
[52] Syvridis D, Argyris A, Bogris A, et al. Integrated devices for optical chaos generation and communication applications [J]. IEEE Journal of Quantum Electronics, 2009, 45(11): 1421-1428. doi:  10.1109/JQE.2009.2027336
[53] Argyris A, Grivas E, Hamacher M, et al. Chaos-on-a-chip secures data transmission in optical fiber links [J]. Optics Express, 2010, 18(5): 5188-5189. doi:  10.1364/OE.18.005188
[54] Bogris A, Argyris A, Syvridis D. Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits [J]. IEEE Journal of Quantum Electronics, 2010, 46(10): 1421-1429. doi:  10.1109/JQE.2010.2049986
[55] Li S S, Chan S C. Chaotic Time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6).
[56] Zhang J Z, Feng C K, Zhang M J, et al. Suppression of time delay signature based on Brillouin backscattering of chaotic laser [J]. IEEE Photonics Journal, 2017, 9(2): 1502408.
[57] Gray G R, Huang D, Agrawal G P. Chaotic dynamics of semiconductor lasers with phase-conjugate feedback [J]. Physical Review A, 1994, 49(3): 2096-2105. doi:  10.1103/PhysRevA.49.2096
[58] Sacher J, Elsässer W, Göbel E O. Intermittence in the coherence collapse of a semiconductor laser with external feedback [J]. Physical Review Letters, 1989, 63(20): 2224-2227. doi:  10.1103/PhysRevLett.63.2224
[59] Tang D Y, Pujol J, Weiss C O. Type-III intermittency of a laser [J]. Physical Review A, 1991, 44(1): 35-38. doi:  10.1103/PhysRevA.44.R35
[60] Tang D Y, Li M Y, Weiss C O. Laser dynamics of type-I intermittency [J]. Physical Review A, 1992, 46(1): 676-678. doi:  10.1103/PhysRevA.46.676
[61] Wang H P, Chen X, Zhao L J, et al. Experimental observation of intermittent chaos in a three-section monolithically integrated semiconductor laser [J]. Progress in Electromagnetic Research Symposium, 2016: 4867-4870.
[62] Bosco A K D, Akizawa Y, Kanno K, et al. Photonic integrated circuits unveil crisis-induced intermittency [J]. Optics Express, 2016, 24(19): 22198-22209. doi:  10.1364/OE.24.022198
[63] Andreas K D B, Sato N, Terashima Y, et al. Random number generation from intermittent optical chaos [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(6).