[1] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger [J]. Phys. Rev. Lett., 2016, 116: 061102.
[2] Harry Gregory M, the LIGO Scientific Collaboration. Advanced LIGO: the next generation of gravitational wave detectors [J]. Class. Quantum Grav., 2010, 27: 084006.
[3] Nery M T, Stefan L, Danilishin, et al. Fundamental limits of laser power stabilization via a radiation pressure transfer scheme [J]. Opt. Lett., 2020, 45(14): 3969-3972. doi:  10.1364/OL.394547
[4] Song Z Y, Yao G B, Zhang L L, et al. Influence factors of phase noise of single frequency fiber laser [J]. Infrared and Laser Engineering, 2017, 46(3): 0305005. doi:  10.3788/IRLA201746.0305005
[5] Shi W, Fu S J, Fang Q, et al. Single-frequency fiber laser based on rare-earth-doped silica fiber [J]. Infrared and Laser Engineering, 2016, 45(10): 1003001. doi:  10.3788/IRLA201645.1003001
[6] Bai X L, Sheng Q, Zhang H W, et al. Influence of seed power and gain fiber temperature on output linewidth in single-frequency EYDFA [J]. Infrared and Laser Engineering, 2018, 47(10): 1005004. doi:  10.3788/IRLA201847.1005004
[7] Zhang H W, Cao Y, Shi W, et al. Experimental investigation on spectral linewidth and relative intensity noise of high-power single-frequency polarization-maintained Thulium-doped fiber amplifier [J]. IEEE Photonics Journal, 2016, 8(3): 1-9.
[8] Zhang P Q, Du T J, Shi Y J, et al. Single-frequency laser based on single-pass QPM frequency doubling of Tm-doped fiber MOPA [J]. Infrared and Laser Engineering, 2020, 49(7): 20200112. doi:  10.3788/IRLA20200112
[9] Zhang L M, Yan C P, Feng J J, et al. 180 W single frequency all fiber laser [J]. Infrared and Laser Engineering, 2008, 47(11): 1105001.
[10] Thies F, Bode N, Oppermann P, et al. Nd:YVO4 high-power master oscillator power amplifier laser system for second-generation gravitational wave detectors [J]. Opt. Lett., 2019, 44(3): 719-722. doi:  10.1364/OL.44.000719
[11] Guo Y R, Lu H D, Peng W N, et al. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate [J]. Opt. Lett., 2019, 44(24): 6033-6036. doi:  10.1364/OL.44.006033
[12] Guo Y R, Xu M Z, Peng W N, et al. Realization of a 101 W single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction [J]. Opt. Lett., 2018, 43(24): 6017-6020. doi:  10.1364/OL.43.006017
[13] Wang X L, Zhou P, Xiao H, et al. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration [J]. Laser Phys. Lett., 2012, 9(8): 591-595. doi:  10.7452/lapl.201210043
[14] Dixneuf C, Guiraud G, Bardin Y V, et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm [J]. Opt. Express, 2020, 28(8): 10960-10969. doi:  10.1364/OE.385095
[15] Lai W C, Ma P F, Liu W, et al. 550-W Single-Frequency All-Fiber Amplifier with Near-Diffraction-Limited Beam Quality [J]. Chinese Journal of Lasers, 2020, 47(0415001): 1-3.
[16] Gouhier B, Guiraud G, Rota-Rodrigo S, et al. 25 W single-frequency, low noise fiber MOPA at 1120 nm [J]. Opt. Lett., 2018, 43(2): 308-311. doi:  10.1364/OL.43.000308
[17] Zhao J, Guiraud G, Pierre C, et al. High-power all-fiber ultra-low noise laser [J]. Applied Physics B, 2018, 124(114): 1-7.
[18] Yang C S, Xu S H, Chen D, et al. 52 W kHz-linewidth low-noise linearlypolarized all-fiber single-frequency MOPA laser [J]. J. Opt., 2016, 18(055801): 1-5.
[19] Yang C S, Guan X C, Xu S H, et al. 210W kHz-linewidth linearly-polarized all-fiber single-frequency MOPA laser[C]. CLEO_AT, 2018, JTu2A. 164.
[20] Zhao Q L, Xu S H, Zhou K J, et al. Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser [J]. Opt. Lett., 2016, 41(7): 1333-1335. doi:  10.1364/OL.41.001333
[21] Shi S P, Yang W H, Zheng Y H, et al. Noise analysis of single-frequency laser source in preparation of squeezed-state light field [J]. Chinese Journal of Lasers, 2019, 46(7): 62-67.
[22] Amili A E, Alouini M. Noise reduction in solid-state lasers using a SHG-based buffer reservoir [J]. Opt. Lett., 2015, 40(7): 1149-1152. doi:  10.1364/OL.40.001149
[23] Caves C M. Quantum-mechanical noise in an interferometer [J]. Phys. Rev. D., 1981, 23(8): 1693-1708. doi:  10.1103/PhysRevD.23.1693
[24] Vahlbruch H, Wilken D, Mehmet M, et al. Laser power stabilization beyond the shot noise limit using squeezed light [J]. Phys. Rev. Lett., 2018, 121: 173601.
[25] Tse M, Yu H C, Kijbunchoo N, et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy [J]. Phys. Rev. Lett., 2019, 123: 231107.
[26] Acernese F, Agathos M, Aiello L, et al. Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light [J]. Phys. Rev. Lett., 2019, 123: 2311081.
[27] Zheng Y H, Lu H D, Li F Q, et al. Four watt long-term stable intracavity frequency-doubling Nd:YVO4 laser of single-frequency operation pumped by a fiber-coupled laser diode [J]. Appl. Opt., 2007, 46(22): 5336-5339. doi:  10.1364/AO.46.005336
[28] Zheng Y H, Li F Q, Wang Y J, et al. , High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter [J]. Opt. Commun., 2010, 283(2): 309-312. doi:  10.1016/j.optcom.2009.10.010
[29] Wang Y J, Yang W H, Zhou H J, et al. Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance [J]. Opt. Express, 2013, 21(15): 18068-18078. doi:  10.1364/OE.21.018068
[30] Wang Y J, Zheng Y H, Shi Z, et al. High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms [J]. Laser Phys. Lett., 2012, 9(7): 1-5.
[31] Wang Y J, Zheng Y H, Xie C D, et al. High-power low-noise Nd:YAP/LBO laser with dual wavelength outputs [J]. IEEE Journal of Quantum Electronics, 2011, 47(7): 1006-1013. doi:  10.1109/JQE.2011.2138681
[32] Zheng Y H, Wang Y J, Xie C D, et al. Single-frequency Nd:YVO4 laser at 671 nm with high-output power of 2.8 W [J]. IEEE Journal of Quantum Electronics, 2012, 48(1): 67-72. doi:  10.1109/JQE.2011.2178398
[33] Harb C C, Ralph T C, Huntington E H, et al. Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source [J]. J. Opt. Soc. Am. B, 1997, 14(11): 2752-3260.
[34] Zhang J, Xie C D, Peng K C, et al. Electronic feedback control of the intensity noise of a single-frequency intracavity-doubled laser [J]. J. Opt. Soc. Am. B, 2002, 19(8): 1910-1916. doi:  10.1364/JOSAB.19.001910
[35] Yang W H, Wang Y J, Li Z X, et al. Compactand low-noise intracavity frequency-doubled single-frequency Nd:YAP/KTP laser [J]. Chinese Journal of Lasers, 2014, 41: 0502002.
[36] Kwee P, Willke B and Danzmann K. New concepts and results in laser power stabilization [J]. Applied Physics B, 2011, 102(3): 515-522. doi:  10.1007/s00340-011-4399-1
[37] Li Z X, Ma W G, Yang W H, et al. Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation [J]. Opt. Lett., 2016, 41(14): 3331-3334. doi:  10.1364/OL.41.003331
[38] Zhang H Y, Wang J R, Li Q H, et al. Experimental realization of high quality factor resonance detector [J]. Journal of Quantum Optics, 2019, 25(4): 456-462.
[39] Chen C Y, Shi S P, and Zheng Y H. Low-noise, transformer-coupled resonant photodetector for squeezed state generation [J]. Rev. Sci. Instrum., 2017, 88: 103101.
[40] Zhou H J, Yang W H, Li Z X, et al. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement [J]. Rev. Sci. Instrum., 2014, 85: 013111.
[41] Jin X L, Su J, Zheng Y H, et al. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes [J]. Opt. Express, 2015, 23(18): 23859-23866. doi:  10.1364/OE.23.023859
[42] Rollins J, Ottaway D, Zucker M, et al. Solid-state laser intensity stabilization at the 10-8 level [J]. Opt. Lett., 2004, 29(16): 1876-1878. doi:  10.1364/OL.29.001876
[43] Seifert F, Kwee P, Heurs M, et al. Laser power stabilization for second-generation gravitational wave detectors [J]. Opt. Lett., 2006, 31(13): 2000-2002. doi:  10.1364/OL.31.002000
[44] Kwee P, Willke B, and Danzmann K. Shot-noise-limited laser power stabilization with a high-power photodiode array [J]. Opt. Lett., 2009, 34(19): 2912-2914. doi:  10.1364/OL.34.002912
[45] Junker J, Oppermann P, and Willke B. Shot-noise-limited laser power stabilization for the AEI 10 m prototype interferometer [J]. Opt. Lett., 2017, 42(4): 755-758. doi:  10.1364/OL.42.000755
[46] Kwee P, Willke B, and Danzmann K. Optical ac coupling to overcome limitations in the detection of optical power fluctuations [J]. Opt. Lett., 2008, 33(13): 1509-1511. doi:  10.1364/OL.33.001509
[47] Kwee P, Willke B, and Danzmann K. Laser power noise detection at the quantum-noise limit of 32A photocurrent [J]. Opt. Lett., 2011, 36(18): 3563-3565. doi:  10.1364/OL.36.003563
[48] Kaufer S, and Willke B. Optical AC coupling power stabilization at frequencies close to the gravitational wave detection band [J]. Opt. Lett., 2019, 44(8): 1916-1919. doi:  10.1364/OL.44.001916
[49] Steinlechner S, Quantum metrology with squeezed and entangled light for the detection of gravitational waves[D]. Germany: Leibniz Universität Hannover, 2013.
[50] Bauchrowitz J, Westphal Tand Schnabel R. A graphical description of optical parametric generation of squeezed states of light [J]. Am. J. Phys., 2013, 81(10): 767-771. doi:  10.1119/1.4819195
[51] Schnabel R. Squeezed states of light and their applications in laser interferometers [J]. Physics Reports, 2017, 684(24): 1-51.
[52] Chua S S Y, Slagmolen B J J, Shaddock D A, et al. Quantum squeezed light in gravitational-wave detectors [J]. Class. Quantum Grav., 2014, 31: 183001.
[53] Wu L A, Kimble H J, Hall J L, et al. Generation of squeezed states by parametric down conversion [J]. Phys. Rev. Lett., 1986, 57(20): 2520-2523. doi:  10.1103/PhysRevLett.57.2520
[54] Yamamoto Y, Imoto N, and Machida S. Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback [J]. Phys. Rev. A, 1986, 33(5): 3243-3261. doi:  10.1103/PhysRevA.33.3243
[55] Heidmann A, Horowicz R J, Reynaud S, et al. Observation of quantum noise reduction on twin laser beams [J]. Phys. Rev. Lett., 1987, 59(22): 2555-2557. doi:  10.1103/PhysRevLett.59.2555
[56] Ou Z Y, Pereira S F, Kimble H J, et al. Realization of the einstein-podolsky-rosen paradox for continuous variables [J]. Phys. Rev. Lett., 1992, 68(25): 3663-3666. doi:  10.1103/PhysRevLett.68.3663
[57] Schneider K, Lang M, Mlynek J, et al. Generation of strongly squeezed continuous-wave light at 1064 nm [J]. Opt. Express, 1998, 2(3): 59-64. doi:  10.1364/OE.2.000059
[58] McKenzie K, Grosse N, Bowen W P, et al. Squeezing in the audio gravitational-wave detection band [J]. Phys. Rev. Lett., 2004, 93: 161105.
[59] Vahlbruch H, Chelkowski S, Hage B, et al. Coherent control of vacuum squeezing in the gravitational-wave detection band [J]. Phys. Rev. Lett., 2006, 97: 011101.
[60] Vahlbruch H, Chelkowski S, Danzmann K, et al. Quantum engineering of squeezed states for quantum communication and metrology [J]. New J. Phys., 2007, 9(10): 12505-12508.
[61] Takeno Y, Yukawa M, Yonezawa H, et al. Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement [J]. Opt. Express, 2007, 15(7): 4321-4327. doi:  10.1364/OE.15.004321
[62] Vahlbruch H, Mehmet M, Chelkowski S, et al. Observation of squeezed light with 10-dB quantum-noise reduction [J]. Phys. Rev. Lett., 2008, 100: 033602.
[63] Eberle T, Steinlechner S, Bauchrowitz J, et al. Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection [J]. Phys. Rev. Lett., 2010, 104: 2511021.
[64] Vahlbruch H, Khalaidovski A, Lastzka N, et al. The GEO 600 squeezed light source [J]. Class. Quantum Grav., 2010, 27: 084027.
[65] Abadie J, Abbott B, Abbott R, et al. A gravitational wave observatory operating beyond the quantum shot-noise limit [J]. Nature Phys., 2011, 7(12): 962-965. doi:  10.1038/nphys2083
[66] Stefszky M S, Mow-Lowry C M, Chua S S Y, et al. Balanced homodyne detection of optical quantum states at audio-band frequencies and below [J]. Class. Quantum Grav., 2012, 29: 145015.
[67] Eberle T, Handchen V, Schnabel R. Stable control of 10 dB two-mode squeezed vacuum states of light [J]. Opt. Express, 2013, 21(9): 11546-11553. doi:  10.1364/OE.21.011546
[68] Vahlbruch H, Mehmet M, Danzmann K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency [J]. Phys. Rev. Lett., 2016, 117: 110801.
[69] Peng K C, Pan Q, Wang H, et al. Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a cw-NOPO [J]. Appl. Phys. B, 1998, 66(6): 755-758. doi:  10.1007/s003400050463
[70] Wang H, Zhang Y, Pan Q, et al. Experimental realization of a quantum measurement for intensity difference fluctuation using a beam splitter [J]. Phys. Rev. Lett., 1999, 82(7): 1414-1417. doi:  10.1103/PhysRevLett.82.1414
[71] Wang Y, Shen H, Jin X L, et al. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier [J]. Opt. Express, 2010, 18(6): 6149-6155. doi:  10.1364/OE.18.006149
[72] Yang W H, Shi S P, Wang Y J, et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations [J]. Opt. Lett., 2017, 42(21): 4553-4556. doi:  10.1364/OL.42.004553
[73] Yang W H, Jin X L, Yu X D, et al. Dependence of measured audio-band squeezing level on local oscillator intensity noise [J]. Opt. Express, 2017, 25(20): 24262-24271. doi:  10.1364/OE.25.024262
[74] Shi S P, Wang Y J, Yang W H, et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption. [J]. Opt. Lett., 2018, 43(21): 5411-5414. doi:  10.1364/OL.43.005411
[75] Zhang W H, Wang J R, Zheng Y H, et al. Optimization of the squeezing factor by temperature-dependent phase shift compensation in a doubly resonant optical parametric oscillator [J]. Appl. Phys. Lett., 2019, 115: 171103.
[76] Sun X C, Wang Y J, Tian L, et al. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection [J]. Chinese Opt. Lett., 2019, 17: 072701.
[77] Shi S P, Wang Y J, Tian L, et al. Observation of a comb of squeezed states with a strong squeezing factor by a bichromatic local oscillator [J]. Opt. Lett., 2020, 45(8): 2419-2422. doi:  10.1364/OL.385912
[78] Shi S P, Tian L, Wang Y J, et al. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes [J]. Phys. Rev. Lett., 2020, 125: 070502.