[1] Snitzer E. Cylindrical dielectric waveguide modes [J]. Journal of the Optical Society of America A, 1961, 51(5): 491-498. doi:  10.1364/JOSA.51.000491
[2] Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarized optical beam mode by laser oscillation [J]. Proceedings of the IEEE, 1972, 60(9): 1107-1109. doi:  10.1109/PROC.1972.8865
[3] Pohl D. Operation of a ruby laser in the purely transverse electric mode TE01 [J]. Applied Physics Letters, 1972, 20(7): 266-267. doi:  10.1063/1.1654142
[4] Churin E G, Hobfeld J, Tschudi T. Polarization configuration with singular point formed by computer generated holograms [J]. Optics Communications, 1993, 99(1): 13-17.
[5] Tidwell S C, Kim G H, Kimura W D. Efficient radially polarized laser beam generation with a double interferometer [J]. Applied Optics, 1993, 32(27): 5222-5229. doi:  10.1364/AO.32.005222
[6] Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters [J]. Optics Letters, 1996, 21(23): 1948-1950. doi:  10.1364/OL.21.001948
[7] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams [J]. Optics Express, 2000, 7(2): 77-87. doi:  10.1364/OE.7.000077
[8] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam [J]. Physical Review Letters, 2003, 91(23): 233901. doi:  10.1103/PhysRevLett.91.233901
[9] Zhan Q, Leger J. Focus shaping using cylindrical vector beams [J]. Optics Express, 2002, 10(7): 324-331. doi:  10.1364/OE.10.000324
[10] Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams [J]. Optics Express, 2010, 18(10): 10828-10833. doi:  10.1364/OE.18.010828
[11] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation [J]. Applied Physics A, 2007, 86(3): 329-334. doi:  10.1007/s00339-006-3784-9
[12] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, 1(1): 1-57. doi:  10.1364/AOP.1.000001
[13] Liu Z, Liu Y, Ke Y, et al. Geometric phase Doppler effect: when struct light meets rotating structured materials [J]. Optics Express, 2017, 25(10): 111564-11573.
[14] Wang H, Shi L, Yuan G, et al. Subwavelength and super-resolution nondiffraction beam [J]. Applied Physics Letters, 2006, 89(17): 171102. doi:  10.1063/1.2364693
[15] Zhang X, Xia T, Cheng S, et al. Free-space information transfer using the elliptic vortex beam with fractional topological charge [J]. Optics Communications, 2019, 431(1): 238-244.
[16] Vieira J, Mendoca J T. Nonlinear laser drivendonutwakefields for positron and electron acceleration [J]. Physical Review Letters, 2014, 112(21): 215001. doi:  10.1103/PhysRevLett.112.215001
[17] Wang X, Li Y, Chen J, et al. A new type of vector fields with hybrid states of polarization [J]. Optics Express, 2010, 18(10): 10786-10795. doi:  10.1364/OE.18.010786
[18] Beckley A M, Brown T G, Alonso M A. Full Poincaré beams [J]. Optics Express, 2010, 18(10): 10777-10785. doi:  10.1364/OE.18.010777
[19] Yi X, Liu Y, Ling X, et al. Hybrid-order Poincare sphere [J]. Physical Review A, 2015, 91(2): 023801. doi:  10.1103/PhysRevA.91.023801
[20] Arora G, Rajput R, Senthilkumaran P. Full Poincaré beam with all the Stokes vortices [J]. Optics Letters, 2019, 44(22): 5638-5641. doi:  10.1364/OL.44.005638
[21] Ruchi A G, Senthilkumaran P. Hybrid order Poincaré spheres for Stokes singularities [J]. Optics Letters, 2020, 45(18): 5136-5139. doi:  10.1364/OL.400946
[22] Liu Y, Liu Z, Zhou J, et al. Measurements of Pancharatnam–Berry phase in mode transformations on hybrid-order Poincaré sphere [J]. Optics Letters, 2017, 42(17): 3447-3450. doi:  10.1364/OL.42.003447
[23] Wang H, Rui G, Zhan Q. Dynamic propagation of optical vortices embedded in full Poincaré beams with rotationally polarization symmetry [J]. Optics Communications, 2015, 351(1): 15-25.
[24] Lerman G M, Stern L, Levy U. Generation and tight focusing of hybridly polarized vector beams [J]. Optics Express, 2010, 18(26): 27650-27657. doi:  10.1364/OE.18.027650
[25] Zhang L, Lin F, Qiu X, et al. Full vectorial feature of second-harmonic generation with full Poincaré beams [J]. Chinese Optics Letters, 2019, 17(9): 091901.
[26] Zhang L, Qiu X, Li F, et al. Second harmonic generation with full Poincaré beams [J]. Optics Express, 2018, 26(9): 11678-11684. doi:  10.1364/OE.26.011678
[27] Zhang L, Qiu X, Zeng L, et al. Multiple trapping using a focused hybrid vector beam [J]. Chinese Physics B, 2019, 28(9): 094202. doi:  10.1088/1674-1056/ab33ef
[28] Wei C, Wu D, Liang C, et al. Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincaré beam [J]. Optics Express, 2015, 23(19): 24331-24341. doi:  10.1364/OE.23.024331
[29] Cardano F, Karimi E, Marrucci L, et al. Generation and dynamics of optical beams with polarization singularities [J]. Optics Express, 2013, 21(7): 8815-8820. doi:  10.1364/OE.21.008815
[30] Shvedov V, Karpinski P, Sheng Y, et al. Visualizing polarization singularities in Bessel Poincaré beams [J]. Optics Express, 2015, 23(9): 12444-12453. doi:  10.1364/OE.23.012444
[31] Garcia-Gracia H, Gutiérrez-Vega J C. Polarization singularities in nondiffracting Mathieu-Poincaré beams [J]. Journal of Optics, 2016, 18(1): 014006. doi:  10.1088/2040-8978/18/1/014006
[32] Nye G F. Polarization effects in the diffraction of electromagnetic waves: the role of disclinations [J]. Proceedings of the Royal Society of London Series A, 1983, 387(1792): 105-132.
[33] Dennis M R. Polarization singularities in paraxial vector fields: morphology and statistics [J]. Optics Communications, 2002, 213(4-6): 201-221. doi:  10.1016/S0030-4018(02)02088-6
[34] Lopez-Mago D. On the overall polarisation properties of Poincaré beams [J]. Journal of Optics, 2019, 21(11): 115605. doi:  10.1088/2040-8986/ab4c25
[35] Fu S, Zhai Y, Wang T, et al. Tailoring arbitrary hybrid Poincaré beams through a single hologram [J]. Applied Physics Letters, 2017, 111(21): 211101. doi:  10.1063/1.5008954
[36] Han L, Qi S, Liu S, et al. Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient [J]. Chinese Physics B, 2020, 29(9): 094203. doi:  10.1088/1674-1056/aba09d
[37] Galvez E, Khadka S, Schubert W H, et al. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light [J]. Applied Optics, 2012, 51(15): 2925-2934. doi:  10.1364/AO.51.002925
[38] Lu T, Huang T, Wang J, et al. Generation of flower high-order Poincaré sphere laser beams from a spatial light modulator [J]. Scientific Reports, 2016, 6(1): 39657. doi:  10.1038/srep39657
[39] Wang Y, Wang L, Xin Y. Generation of full Poincaré beams on arbitrary order Poincaré sphere [J]. Current Optics and Photonics, 2017, 1(6): 631-636.
[40] Ling X, Yi X, Dai Z, et al. Characterization and manipulation of full Poincaré beams on the hybrid Poincaré sphere [J]. Journal of the Optical Society of America B, 2016, 33(11): 2172-2176. doi:  10.1364/JOSAB.33.002172
[41] Li D, Feng S, Nie S, et al. Generation of arbitrary perfect Poincaré beams [J]. Journal of Applied Physics, 2019, 125(7): 073105. doi:  10.1063/1.5079850
[42] Gu Z, Yin D, Gu F, et al. Generation of concentric perfect Poincaré beams [J]. Scientific Reports, 2019, 9(1): 15301. doi:  10.1038/s41598-019-50705-z
[43] Beckley A M, Brown T G, Alonso M A. Full Poincaré beams II: partial polarization [J]. Optics Express, 2012, 20(9): 9357-9362. doi:  10.1364/OE.20.009357
[44] Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation [J]. Applied Physics Letters, 2006, 88(22): 221102. doi:  10.1063/1.2207993
[45] Liu Z X, Liu Y Y, Ke Y G, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere [J]. Photonics Research, 2017, 5(1): 15-21. doi:  10.1364/PRJ.5.000015
[46] Lou S, Zhou Y, Yuan Y, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere based on liquid crystal device [J]. Optics Express, 2019, 27(6): 8596-8604. doi:  10.1364/OE.27.008596
[47] Zhang Y, Chen P, Ge S, et al. Spin-controlled massive channels of hybrid-order Poincare sphere beams [J]. Applied Physics Letters, 2020, 117(8): 081101. doi:  10.1063/5.0020398
[48] Khajavi B, Galvez E J. Preparation of Poincaré beams with a same-path polarization/spatial-mode interferometer [J]. Optical Engineering, 2015, 54(11): 111305. doi:  10.1117/1.OE.54.11.111305
[49] Alpmann C, Schlickriede C, Otte E, et al. Dynamic modulation of Poincaré beams [J]. Scientific Reports, 2017, 7(1): 8076. doi:  10.1038/s41598-017-07437-9
[50] Otte E, Alpmann C, Denz C. Polarization singularity explosions in tailored light fields [J]. Laser Photonics Reviews, 2018, 12(6): 1700200. doi:  10.1002/lpor.201700200
[51] Lerman G M, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm [J]. Optics Letters, 2008, 33(23): 2782-2784. doi:  10.1364/OL.33.002782
[52] Wang R, He S, Chen S, et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere [J]. Optics Letters, 2018, 43(15): 3570-3573. doi:  10.1364/OL.43.003570
[53] Lin W B, Ota Y, Arakawa Y, et al. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers [J]. Physical Review Research, 2021, 3(2): 023055. doi:  10.1103/PhysRevResearch.3.023055
[54] Liu M Z, Huo P C, Zhu W Q, et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface [J]. Nature Communications, 2021, 12: 2230. doi:  10.1038/s41467-021-22462-z
[55] Wang H, Shi L, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics [J]. Nature Photonics, 2008, 2(8): 501-505. doi:  10.1038/nphoton.2008.127
[56] Zang X, Bautista G, Turquet L, et al. Efficient hybrid-mode excitation in plasmonic nanoantennas by tightly focused higher-order vector beams [J]. Journal of the Optical Society of America B, 2021, 38(2): 521-529. doi:  10.1364/JOSAB.412195
[57] Zhu W, Shvedov V, She W, et al. Transverse spin angular momentum of tightly focused full Poincaré beams [J]. Optics Express, 2015, 23(26): 34029-34041. doi:  10.1364/OE.23.034029
[58] Man Z, Dou X, Urbach H P. The evolutions of spin density and energy flux of strongly focused standard full Poincaré beams [J]. Optics Communications, 2002, 458(1): 124790.
[59] Man Z, Bai Z, Li J, et al. Focus shaping by tailoring arbitrary hybrid polarization states that have a combination of orthogonal linear polarization bases [J]. Applied Optics, 2018, 57(12): 3047-3055. doi:  10.1364/AO.57.003047
[60] Han W, Cheng W, Zhan Q W. Flattop focusing with full Poincaré beams under low numerical aperture illumination [J]. Optics Letters, 2011, 36(9): 1605-1607. doi:  10.1364/OL.36.001605
[61] Dai X, Li Y, Liu L. Tight focusing properties of hybrid-order Poincaré sphere beams [J]. Optics Communications, 2018, 426(1): 46-53.
[62] Wang L G. Optical forces on submicron particles induced by full Poincaré beams [J]. Optics Express, 2012, 20(19): 20814-20826. doi:  10.1364/OE.20.020814
[63] Xue Y, Wang Y, Zhou S, et al. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam [J]. Journal of the Optical Society of America A, 2018, 35(6): 953-958. doi:  10.1364/JOSAA.35.000953
[64] Sanchez M M, Davis J A, Moreno I, et al. Gouy phase effects on propagation of pure and hybrid vector beams [J]. Optics Express, 2019, 27(3): 2374-2386. doi:  10.1364/OE.27.002374
[65] Lu X, Wu Z, Zhang W, et al. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect [J]. Scientific Reports, 2014, 4(1): 4865.
[66] Yang C, Zhou Z, Li Y, et al. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop [J]. Optics Letters, 2019, 44(2): 219-222. doi:  10.1364/OL.44.000219
[67] Wu H, Zhou Z, Gao W, et al. Dynamic tomography of the spin-orbit coupling in nonlinear optics [J]. Physical Review A, 2019, 99(2): 023830. doi:  10.1103/PhysRevA.99.023830
[68] Wu H, Zhao B, Rosles-Guzmán, et al. Spatial-polarization-independent parametric up-conversion of vectorially structured light [J]. Physical Review Applied, 2020, 13(6): 064041. doi:  10.1103/PhysRevApplied.13.064041
[69] Silva N R, Oliveira A G, Arruda M F Z, et al. Stimulated parametric down-conversion with vector vortex beams [J]. Physical Review Applied, 2021, 15(2): 024039. doi:  10.1103/PhysRevApplied.15.024039
[70] Wen B, Rui G, He J, et al. Polarization rotation and singularity evolution of fundamental Poincaré beams through anisotropic Kerr nonlinearities [J]. Journal of Optics, 2020, 22(8): 08550.
[71] Yang X, Chen Y, Wang J, et al. Observing quantum coherence induced transparency of hybrid vector beams in atomic vapor [J]. Optics Letters, 2019, 44(11): 2911-2914. doi:  10.1364/OL.44.002911
[72] Luo D, Hu H, Pan C, et al. Nonlinear control of polarization rotation of hybrid-order vector vortex beams [J]. Journal of Optics, 2020, 22(11): 115612. doi:  10.1088/2040-8986/abbecb