[1]
[2] Van de Hulst H C. Light Scattering by Small Particles [M]. New York: Dover Publications Inc., 1981.
[3] Mishchenko M I, Travis L D, Lacis A A. Scattering, Absorption, and Emission of Light by Small Particles [M]. Cambridge: Cambridge University Press, 2002.
[4]
[5]
[6] Wilson Jeremy D, Foster Thomas H. Mie theory interpretations of light scattering from intact cells [J]. Optics Letters, 2005, 30(18): 2442-2444.
[7]
[8] Wriedt T, Hellmers J. New scattering information portal for the light-scattering community[J]. J Quant Spectrosc Radiat Transfer, 2008, 109: 1536-1542 .
[9] Kahnert M. Electromagnetic scattering by nonspherical particles: recent advances [J]. J Quant Spectrosc Radiat Transfer, 2010, 111: 1788-1790.
[10]
[11] Lei Chengxin, Liu Hanfa, Zhang Huafu. Research on laser scattering property by randomly oriented soot clus ered agglomerates[J]. Acta Optica Sinica, 2010, 30(3): 876-880. (in Chinese)
[12]
[13] Zhao Yiming, Jiang Yuesong, Lu Xiaomei. Theory analysis of polarization characteristic of the light scattered by the aerosol [J]. Infrared and Laser Engineering, 2007, 36 (6): 862-865. (in Chinese)
[14]
[15]
[16] Sun Guozheng, Sun Qiang, Ren Zhibin. Analysis of the radius of microsphere particles based on Mie scattering theory [J]. Infrared and Laser Engineering, 2005, 34 (4): 495-498. (in Chinese)
[17]
[18] Neukammer J, Gohlke C, Hpe A, et al. Angularet distribution of light scattered by single biological cells and oriented particle agglomerates [J]. Applied Optics, 2003, 42 (31): 6388-6397.
[19] Xu Min. Superposition rule for light scattering by a composite particle[J]. Optics Letters, 2006, 31(22): 3223-3225.
[20]
[21] Justin D Keener, Kevin J Chalut, John W, et al. Application of Mie theory to determine the structure of spheroidal scatterers in biological materials [J]. Optics Letters, 2007, 32 (10): 1326-1328.
[22]
[23]
[24] Ke Si, Wei Gong, Colin J R Sheppard, et al. Model for light scattering in biological tissue and cells based on random rough nonspherical particles [J]. Applied Optics, 2009, 48(6): 1153-1157.
[25] Konstantin V Gilev, Elena Eremina, Maxim A Yurkin, et al. Comparison of the discrete dipole approximation and the discrete soure method for simulation of light scattering by red blood cells[J]. Optics Express, 2010, 18(6): 5681-5690.
[26]
[27]
[28] Akihisa Nonoyama, Alicia Garcia-Lopez, Luis H, et al. Hypochrmicity in red blood cells: an experimental and theoretical investigation[J]. Biomedical Optics Express, 2011, 2(8):2126-2143.
[29]
[30] Wu Dajian, Hong Yun, Bu Min, et al. A model for light scattering from red blood cells [J]. Laser Technology, 2007, 31(2): 156-159. (in Chinese)
[31] Matti Kinnunen, Antti Kauppila, Artashes Karmenyan, et al. Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level [J]. Biomedical Optics Express, 2011, 2(7): 1803-1814.
[32]
[33]
[34] DeVoe H. Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction [J]. J Chem Phys, 1964, 41: 393-400.
[35] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations [J]. J Opt Soc Am A, 1994, 11 (4): 1491-1499.
[36]
[37] Draine B T. The discrete-dipole approximation and its application to interstellar graphite grains [J]. Astrophys J, 1988, 333: 848-872.