[1] Smalley D E, Smithwick Q Y J, Bove V M, et al. Anisotropic leaky-mode modulator for holographic video displays[J]. Nature, 2013, 498(7454): 313-317.
[2]
[3]
[4] Stahl R, Rochus V, Rottenberg X, et al. Modular sub-wavelength diffractive light modulator for high-definition holographic displays[C]//Journal of Physics: Conference Series. IOP Publishing, 2013, 415(1): 012057.
[5]
[6] Michalkiewicz A, Kujawinska M, Kozacki T, et al. Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator[C]//Optical Science and Technology, the SPIE 49th Annual Meeting. International Society for Optics and Photonics, 2004: 85-94.
[7]
[8] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22): 27438-27451.
[9] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641-648.
[10]
[11]
[12] Knight M W, Liu L, Wang Y, et al. Aluminum plasmonic nanoantennas[J]. Nano Letters, 2012, 12(11): 6000-6004.
[13]
[14] Caldwell M E, Yeatman E M. Surface-plasmon spatial light modulators based on liquid crystal[J]. Applied Optics, 1992, 31(20): 3880-3891.
[15] Schulz L G, Tangherlini F R. Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n[J]. JOSA, 1954, 44(5): 362-367.
[16]
[17] Chan G H, Zhao J, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles[J]. The Journal of Physical Chemistry C, 2008, 112(36): 13958-13963.
[18]
[19] Farhad Shokraneh. Scattering Properties of Nanoantennas[M]. Sweden: Department of Electrical and Information Technology Lund University, 2012.
[20]
[21] Biagioni P, Huang J S, Hecht B. Nanoantennas for visible and infrared radiation[J]. Reports on Progress in Physics, 2012, 75(2): 024402.
[22]
[23]
[24] Bozhevolnyi S I. Plasmonic Nanoguides and Circuits[M]. Denmark: Optical Society of America, 2008.
[25]
[26] Chan G H, Zhao J, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles[J]. The Journal of Physical Chemistry C, 2008, 112(36): 13958-13963.
[27]
[28] Gjonaj B. Digital plasmonics: from concept to microscopy[D]. Netherlands: FOM Institute for Atomic and Molecular Physics Science Park, 2012.
[29]
[30] Encina E R, Coronado E A. Plasmonic nanoantennas: angular scattering properties of multipole resonances in noble metal nanorods[J]. The Journal of Physical Chemistry C, 2008, 112(26): 9586-9594.
[31]
[32] Zhu Jun, Li Zhiquan, Qin Liuli. Cavity physical properties of SPP propagation in the MIM structure[J]. Infrared and Laser Engineering, 2015, 44(3):852-856. (in Chinese)
[33]
[34] Barnard E S. Plasmonic optical antennas for enhanced light detection and emission[D]. America: Stanford University, 2011.
[35] Sndergaard T, Bozhevolnyi S I. Strip and gap plasmon polariton optical resonators[J]. Physica Status Solidi (b), 2008, 245(1): 9-19.
[36]
[37]
[38] Yang J, Sauvan C, Jouanin A, et al. Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor[J]. Optics Express, 2012, 20(15): 16880-16891.
[39] Liaw J W, Huang C H, Chen B R, et al. Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod[J]. Nanoscale Research Letters, 2012, 7(1): 1-7.