[1] Bai Zhenxu, Williams R J, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion [J]. Optics Letters, 2018, 43(3): 563-566. doi:  10.1364/OL.43.000563
[2] 程雪, 王建立, 刘昌华. 高能光纤激光器光束合成技术[J]. 红外与激光工程, 2018, 47(1): 0103011. doi:  10.3788/IRLA201847.0103011

Cheng Xue, Wang Jianli, Liu Changhua. Beam combining of high energy fiber lasers [J]. Infrared and Laser Engineering, 2018, 47(1): 0103011. (in Chinese) doi:  10.3788/IRLA201847.0103011
[3] 孟冬冬, 张鸿博, 李明山, 等. 定向红外对抗系统中的激光器技术[J]. 红外与激光工程, 2018, 47(11): 1105009. doi:  10.3788/IRLA201847.1105009

Meng Dongdong, Zhang Hongbo, Li Mingshan, et al. Laser technology for direct IR countermeasure system [J]. Infrared and Laser Engineering, 2018, 47(11): 1105009. (in Chinese) doi:  10.3788/IRLA201847.1105009
[4] 董全睿, 陈涛, 高世杰, 等. 星载激光通信技术研究进展[J]. 中国光学, 2019, 12(6): 1260-1270. doi:  10.3788/co.20191206.1260

Dong Quanrui, Chen Tao, Gao Shijie, et al. Progress of research on satellite-borne laser communication technology [J]. Chinese Optics, 2019, 12(6): 1260-1270. (in Chinese) doi:  10.3788/co.20191206.1260
[5] 雷成敏, 谷炎然, 陈子伦等. 定向红外对抗系统中的激光器技术[J]. 光学 精密工程, 2018, 26(7): 1561-1569. doi:  10.3788/OPE.20182607.1561

Lei Chengmin, Gu Yanran, Chen Zilun, et al. Developments of high power all-fiber side-pumping combiner [J]. Optics and Precision Engineering, 2018, 26(7): 1561-1569. (in Chinese) doi:  10.3788/OPE.20182607.1561
[6]

Weber R, Neuenschwander B, Weber H P. Thermal effects in solid-state laser materials [J]. Optical Materials, 1999, 11(2-3): 245-254. doi:  10.1016/S0925-3467(98)00047-0
[7]

Chénais S, Druon F, Forget S, et al. On thermal effects in solid-state lasers: The case of ytterbium-doped materials [J]. Progress in Quantum Electronics, 2006, 30(4): 89-153. doi:  10.1016/j.pquantelec.2006.12.001
[8] 岱钦, 张善春, 杨帆, 等. 高光束质量高斯非稳腔固体激光器研究[J]. 中国光学, 2019, 12(3): 559-566. doi:  10.3788/co.20191203.0559

Dai Qin, Zhang Shanchun, Yang Fan, et al. Research on the high beam quality of Gaussian unstable resonators in solid state lasers [J]. Chinese Optics, 2019, 12(3): 559-566. (in Chinese) doi:  10.3788/co.20191203.0559
[9]

Chen J, Li J, Xu J, et al. 4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd: YAG slab laser [J]. Optics & Laser Technology, 2014, 63: 50-53.
[10]

Chen Z Z, Xu Y T, Guo Y D, et al. 8.2 kW high beam quality quasi-continuous-wave face-pumped Nd: YAG slab amplifier [J]. Applied Optics, 2015, 54(16): 5011-5015. doi:  10.1364/AO.54.005011
[11] 王辉华, 林龙信, 叶辛. 高功率板条激光技术现状与发展趋势[J]. 红外与激光工程, 2020, 49(7): 20190456. doi:  10.3788/IRLA20190456

Wang Huihua, Lin Longxin, Ye Xin. Status and development trend of high power slab laser technology [J]. Infrared and Laser Engineering, 2020, 49(7): 20190456. (in Chinese) doi:  10.3788/IRLA20190456
[12]

Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi:  10.1364/JOSAB.27.000B63
[13]

Jauregui C, Limpert J, Tünnermann A. High-power fiber lasers [J]. Nature Photonics, 2013, 7(11): 861-867. doi:  10.1038/nphoton.2013.273
[14] 盛泉, 司汉英, 张海伟, 等. 高功率光纤激光器反向光放大和损伤特性数值分析[J]. 红外与激光工程, 2020, 49(10): 20200009.

Sheng Quan, Si Hanying, Zhang Haiwei, et al. Numerical study on backward light amplification and damage in high-power fiber laser [J]. Infrared and Laser Engineering, 2020, 49(10): 20200009. (in Chinese)
[15]

Giesen A, Speiser J. Fifteen years of work on thin-disk lasers: results and scaling laws [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 598-609. doi:  10.1109/JSTQE.2007.897180
[16]

Mende J, Schmid E, Speiser J, et al. Thin disk laser: power scaling to the kW regime in fundamental mode operation[C]//Solid State Lasers XVIII: Technology and Devices, 2009, 7193: 71931V.
[17] 王菲. 高稳定度光泵浦腔内倍频 488 nm 半导体薄片激光器[J]. 红外与激光工程, 2019, 48(6): 0606004. doi:  10.3788/IRLA201948.0606004

Wang Fei. High stability 488 nm light generated by intra-cavity frequency doubling in optically pumped semiconductor disc lasers [J]. Infrared and Laser Engineering, 2019, 48(6): 0606004. (in Chinese) doi:  10.3788/IRLA201948.0606004
[18]

Glick Y, Shamir Y, Aviel M, et al. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement [J]. Optics Letters, 2018, 43(19): 4755-4758. doi:  10.1364/OL.43.004755
[19]

Steinhausser B, Brignon A, Lallier E, et al. High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup [J]. Optics Express, 2007, 15(10): 6464-6469. doi:  10.1364/OE.15.006464
[20]

Rodgers B C, Russell T H, Roh W B. Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber [J]. Optics Letters, 1999, 24(16): 1124-1126. doi:  10.1364/OL.24.001124
[21]

Kitzler O, Mckay A, Mildren R P. Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser [J]. Optics Letters, 2012, 37(14): 2790-2792. doi:  10.1364/OL.37.002790
[22]

Murray J T, Austin W L, Powell R C. Intracavity Raman conversion and Raman beam cleanup [J]. Optical Materials, 1999, 11(4): 353-371. doi:  10.1016/S0925-3467(98)00033-0
[23]

Russell T H, Willis S M, Crookston M B, et al. Stimulated Raman scattering in multi-mode fibers and its application to beam cleanup and combining [J]. Journal of Nonlinear Optical Physics & Materials, 2002, 11(3): 303-316.
[24] 冯衍, 姜华卫, 张磊. 高功率拉曼光纤激光器技术研究进展[J]. 中国激光, 2017, 44(2): 0201005. doi:  10.3788/CJL201744.0201005

Feng Yan, Jiang Huawei, Zhang Lei. Advances in high power Raman fiber laser technology [J]. Chinese Journal of Lasers, 2017, 44(2): 0201005. (in Chinese) doi:  10.3788/CJL201744.0201005
[25]

Bai Z, Yuan H, Liu Z, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review [J]. Optical Materials, 2018, 75: 626-645. doi:  10.1016/j.optmat.2017.10.035
[26]

Jiang H, Zhang L, Feng Y. Cascaded-cladding-pumped cascaded Raman fiber amplifier [J]. Optics Express, 2015, 23(11): 13947. doi:  10.1364/OE.23.013947
[27]

Glick Y, Shamir Y, Aviel M, et al. KW-class clad-pumped Raman all-fiber laser with brightness enhancement[C]//Proc SPIE, 2018, 10683: 1-9.
[28]

Shamir Y, Glick Y, Aviel M, et al. 250 W clad pumped Raman all-fiber laser with brightness enhancement [J]. Optics Letters, 2018, 43(4): 711-714. doi:  10.1364/OL.43.000711
[29]

Babin S A. High-brightness all-fiber Raman lasers directly pumped by multimode laser diodes [J]. High Power Laser Science and Engineering, 2019, 7: 107-113.
[30]

Glick Y, Fromzel V, Zhang J, et al. High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement [J]. Applied Optics, 2017, 56(3): B97-B102. doi:  10.1364/AO.56.000B97
[31]

Wang Wenliang, Huang Liangjin, Leng Jinyong, et al. Beam cleanup of the stimulated Raman scattering in grade-index multi-mode fiber [J]. Chinese Optics of Letters, 2014, 12(S2): 55-58. doi:  10.3788/COL201412.S21401
[32]

Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems [J]. Optics Express, 2012, 20(12): 12912-12925. doi:  10.1364/OE.20.012912
[33]

Bouteiller J C. Spectral modeling of Raman fiber lasers [J]. IEEE Photonics Technology Letters, 2003, 15(12): 1698-1700. doi:  10.1109/LPT.2003.819758
[34]

Jiang Pengbo, Zhang Guizhong, Liu Jian, et al. 16.7 W 885 nm diode-side-pumped actively Q-switched Nd: YAG/YVO4 intracavity Raman laser at 1176 nm [J]. Journal of Physics D Applied Physics, 2017, 50(46): 465303.
[35]

Jiang W, Zhu S, Chen W, et al. Q-switched Yb: YAG/YVO4 Raman laser [J]. IEEE Photonics Technology Letters, 2015, 27(10): 1080-1083. doi:  10.1109/LPT.2015.2407576
[36]

Findeisen J, Eichler H J, Peuser P, et al. Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers [J]. Applied Physics B, 2000, 70(2): 159-162.
[37]

Takei N, Suzuki S, Kannari F. 20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal [J]. Applied Physics B (Lasers and Optics), 2002, 74(6): 521-527. doi:  10.1007/s003400200832
[38]

Williams R J, Kitzler O, Mckay A, et al. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping [J]. Optics Letters, 2014, 39(14): 4152-4155. doi:  10.1364/OL.39.004152
[39]

Mildren R P, Rabeau J R. Optical Engineering of Diamond[M]. Germany: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.
[40]

Balmer R S, Brandon J R, Clewes S L, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications [J]. Journal of Physics Condensed Matter, 2009, 21(36): 364221. doi:  10.1088/0953-8984/21/36/364221
[41]

Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond for novel laser applications[C]//Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII, 2010, 7838: 783819.
[42] 白振旭, 杨学宗, 陈晖, 等. 高功率金刚石激光技术研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201076.

Bai Zhenxu, Yang Xuezong, Chen Hui, et al. Research progress of high-power diamond laser technology (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201076. (in Chinese)
[43]

Williams R J, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond [J]. Laser & Photonics Reviews, 2015, 9(4): 405-411.
[44]

Antipov S, Sabella A, Williams R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2= 15 beam [J]. Optics Letters, 2019, 44(10): 2506-2509.
[45]

Heinzig M, Walbaum T, Williams R J, et al. High-power single-pass pumped diamond Raman laser[C]// Conference on Lasers & Electro-optics Europe & European Quantum Electronics Conference, 2017.
[46]

Mochalov I V. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW: Nd) [J]. Optical Engineering, 1997, 36(6): 1660-1669. doi:  10.1117/1.601185
[47] 胡大伟, 王正平, 夏海瑞, 等. LiIO3晶体的受激拉曼散射[J]. 强激光与粒子束, 2008, 20(11): 1883-1886.

Hu Dawei, Wang Zhengping, Xia Hairui, et al. Stimulated Raman scattering of LiIO3 crystal [J]. High Power Laser and Particle Beams, 2008, 20(11): 1883-1886. (in Chinese)
[48]

Li Y, Bai Z, Chen H, et al. Eye-safe diamond Raman laser [J]. Results in Physics, 2020, 16: 102853.
[49]

Eckhardt G, Bortfeld D P, Geller M. Stimulated emission of Stokes and anit-Stokes Raman lines from diamond, calcite, and α-sulfur single crystals [J]. Applied Physics Letters, 1963, 3(8): 137-138. doi:  10.1063/1.1753903
[50]

Bai Z X, Williams R J, Kitzler O, et al. Diamond Brillouin laser in the visible [J]. APL Photonics, 2020, 5(3): 031301.
[51] 陈志琼, 付喜宏, 张俊, 等. 基于人造金刚石晶体的拉曼激光器研究进展[J]. 发光学报, 2016, 37(5): 583-590. doi:  10.3788/fgxb20163705.0583

Chen Zhiqiong, Fu Xihong, Zhang Jun, et al. Development of Raman laser based on synthetic diamond crystal [J]. Chinese Journal of Luminescence, 2016, 37(5): 583-590. (in Chinese) doi:  10.3788/fgxb20163705.0583
[52]

Kaminskii A A, Ralchenko V G E, Konov V I. Observation of stimulated Raman scattering in CVD-diamond [J]. Journal of Experimental and Theoretical Physics Letters, 2004, 80(4): 267-270. doi:  10.1134/1.1813684
[53]

Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser [J]. Optics Express, 2011, 19(11): 10857-10863. doi:  10.1364/OE.19.010857
[54]

Mildren R P, Butler J E, Rabeau J R. CVD-diamond external cavity Raman laser at 573 nm [J]. Optics Express, 2008, 16(23): 18950-18955. doi:  10.1364/OE.16.018950
[55]

Schlosser P J, Parrotta D C, Savitski V G, et al. Intracavity Raman conversion of a red semiconductor disk laser using diamond [J]. Optics Express, 2015, 23(7): 8454-8461. doi:  10.1364/OE.23.008454
[56]

Sabella A, Piper J A, Mildren R P. 1240 nm diamond Raman laser operating near the quantum limit [J]. Optics Letters, 2010, 35(23): 3874-3876. doi:  10.1364/OL.35.003874
[57]

Lubeigt W, Bonner G M, Hastie J E, et al. An intra-cavity Raman laser using synthetic single-crystal diamond [J]. Optics Express, 2010, 18(16): 16765-16770. doi:  10.1364/OE.18.016765
[58]

Savitski V G, Friel I, Hastie J E, et al. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers [J]. IEEE Journal of Quantum Electronics, 2012, 48(3): 328-337. doi:  10.1109/JQE.2011.2179917
[59]

Casula R, Penttinen J P, Kemp A J, et al. 1.4 µm continuous-wave diamond Raman laser [J]. Optics Express, 2017, 25(25): 31377-31383.
[60]

Demetriou G, Kemp A J, Savitski V. 100 kW peak power external cavity diamond Raman laser at 2.52 μm [J]. Optics Express, 2019, 27(7): 10296-10303.
[61]

Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm [J]. Optics Letters, 2014, 39(13): 4037-4040. doi:  10.1364/OL.39.004037
[62]

Spence D J, Granados E, Mildren R P. Mode-locked picosecond diamond Raman laser [J]. Optics Letters, 2010, 35(4): 556-558. doi:  10.1364/OL.35.000556
[63]

Murtagh M, Lin J P, Mildren R P, et al. Efficient diamond Raman laser generating 65 fs pulses [J]. Optics Express, 2015, 23(12): 15504-15513. doi:  10.1364/OE.23.015504
[64]

Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single-longitudinal-mode laser using spatial hole burning free gain [J]. Optica, 2016, 3(8): 876-881. doi:  10.1364/OPTICA.3.000876
[65]

Williams R J, Kitzler O, Bai Z X, et al. High power diamond Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-14.
[66]

Pask H M, Piper J A. Diode-pumped LiIO3 intracavity Raman lasers [J]. IEEE Journal of Quantum Electronics, 2000, 36(8): 949-955. doi:  10.1109/3.853553
[67]

Murray J T, Powell R C, Peyghambarian N, et al. Generation of 1.5 μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals [J]. Optics Letters, 1995, 20(9): 1017-1019.
[68]

Mckay A, Kitzler O, Mildren R P. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser [J]. Laser & Photonics Reviews, 2014, 8(3): 37-41.
[69]

Shukla P, Lawrence J, Zhang Y. Understanding laser beam brightness: A review and new prospective in material processing [J]. Optics & Laser Technology, 2015, 75: 40-51.
[70]

Kaminskii A A, Hemley R J, Lai J, et al. High-order stimulated Raman scattering in CVD single crystal diamond [J]. Laser Physics Letters, 2007, 4(5): 350-353. doi:  10.1002/lapl.200610127
[71]

Bai Z X, Williams R J, Kitzler O, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement [J]. Optics Express, 2018, 26(16): 19797-19803. doi:  10.1364/OE.26.019797
[72]

Antipov Sergei, Williams Robert J, Sabella Alexander, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power [J]. Optics Express, 2020, 28(10): 15232-15239. doi:  10.1364/OE.388794
[73]

Yang X Z, Kitzler O, Spence D J, et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain [J]. Optics Letters, 2019, 44(4): 839-842.
[74]

Yang X Z, Kitzler O, Spence D J, et al. Diamond sodium guide star laser [J]. Optics Letters, 2020, 45(7): 1898-1901.
[75]

Sarang S, Kitzler O, Lux O, et al. Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain [J]. OSA Continuum, 2019, 2(4): 1028-1038.
[76]

Kitzler O, Lin J P, Pask H M, et al. Single-longitudinal-mode ring diamond Raman laser [J]. Optics Letters, 2017, 42(7): 1229-1232. doi:  10.1364/OL.42.001229
[77]

Sheng Q, Li R, Lee A J, et al. A single-frequency intracavity Raman laser [J]. Optics Express, 2019, 27(6): 8540-8553. doi:  10.1364/OE.27.008540