[1] Yang Z, Samanta S, Yan W, et al. Super-resolution microscopy for biological imaging [J]. Adv Exp Med Biol, 2021, 3233: 23-43.
[2] Heald R, Cohen-Fix O. Morphology and function of membrane-bound organelles [J]. Curr Opin Cell Biol, 2014, 26: 79-86. doi:  10.1016/j.ceb.2013.10.006
[3] Yang Z, Zhang Z, Zhao Y, et al. Organelle interaction and drug discovery: Towards correlative nanoscopy and molecular dynamics simulation [J]. Front Pharmacol, 2022, 13: 935898. doi:  10.3389/fphar.2022.935898
[4] Lemon W C, Mcdole K. Live-cell imaging in the era of too many microscopes [J]. Curr Opin Cell Biol, 2020, 66: 34-42. doi:  10.1016/j.ceb.2020.04.008
[5] Lboukili I, Stamatas G, Descombes X. Automating reflectance confocal microscopy image analysis for dermatological research: A review [J]. J Biomed Opt, 2022, 27(7): 070902.
[6] Bourzac K. Cell imaging: Beyond the limits [J]. Nature, 2015, 526(7574): S50-S54. doi:  10.1038/526S50a
[7] Arizono M, Idziak A, Quici F, et al. Getting sharper: The brain under the spotlight of super-resolution microscopy [J]. Trends Cell Biol, 2022, S0962-8924(22): 00150-7.
[8] Hu Chunguang, Zha Ridong, Ling Qiuyu, et al. Super-resolution microscopy applications and development in living cell [J]. Infrared and Laser Engineering, 2017, 46(11): 1103002. (in Chinese) doi:  10.3788/IRLA201746.1103002
[9] Lu M, Ward E, van Tartwijk F W, et al. Advances in the study of organelle interactions and their role in neurodegenerative diseases enabled by super-resolution microscopy [J]. Neurobiol Dis, 2021, 159: 105475. doi:  10.1016/j.nbd.2021.105475
[10] Friedman J R, Lackner L L, West M, et al. ER tubules mark sites of mitochondrial division [J]. Science, 2011, 334(6054): 358-362. doi:  10.1126/science.1207385
[11] Rowland A A, Chitwood P J, Phillips M J, et al. ER contact sites define the position and timing of endosome fission [J]. Cell, 2014, 159(5): 1027-1041. doi:  10.1016/j.cell.2014.10.023
[12] Lee J E, Cathey P I, Wu H, et al. Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles [J]. Science, 2020, 367(6477): eaay7108. doi:  10.1126/science.aay7108
[13] Daniele T, Schiaffino M V. Organelle biogenesis and interorganellar connections: Better in contact than in isolation [J]. Commun Integr Biol, 2014, 7: e29587. doi:  10.4161/cib.29587
[14] Peng W, Wong Y C, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1 [J]. Proc Natl Acad Sci U S A, 2020, 117(32): 19266-19275. doi:  10.1073/pnas.2003236117
[15] Lu M, van Tartwijk F W, Lin J Q, et al. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes [J]. Sci Adv, 2020, 6(51): eabc7209. doi:  10.1126/sciadv.abc7209
[16] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy [J]. Opt Lett, 1994, 19(11): 780-782. doi:  10.1364/OL.19.000780
[17] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. J Microsc, 2000, 198(Pt2): 82-87.
[18] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793): 1642-1645. doi:  10.1126/science.1127344
[19] Sigal Y M, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy [J]. Science, 2018, 361(6405): 880-887.
[20] Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy [J]. Opt Lett, 1999, 24(14): 954-956. doi:  10.1364/OL.24.000954
[21] Liu S, Hoess P, Ries J. Super-resolution microscopy for structural cell biology [J]. Annu Rev Biophys, 2022, 51: 301-326. doi:  10.1146/annurev-biophys-102521-112912
[22] Zhou Hanqiu, Zhu Yinru, Han Hongyi, et al. Research progress of live cell and in vivo super-resolution imaging based on STED [J]. Progress in Biochemistry and Biophysics, 2022, 49: 1-20. (in Chinese) doi:  10.16476/j.pibb.2022.0272
[23] Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution [J]. Proc Natl Acad Sci U S A, 2005, 102(37): 13081-13086. doi:  10.1073/pnas.0406877102
[24] Rego E H, Shao L, Macklin J J, et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution [J]. Proc Natl Acad Sci U S A, 2012, 109(3): E135-E143.
[25] Ströhl F, Kaminski C F. Frontiers in structured illumination microscopy [J]. Optica, 2016, 3(6): 667. doi:  10.1364/OPTICA.3.000667
[26] Valli J, Garcia-Burgos A, Rooney L M, et al. Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique [J]. J Biol Chem, 2021, 297(1): 100791. doi:  10.1016/j.jbc.2021.100791
[27] Chen Ting-ai, Chen Long-chao, et al. Structured illumination super-resolution microscopy technology: review and prospect [J]. Chinese Optics, 2018, 11(3): 307-328. (in Chinese) doi:  10.3788/co.20181103.0307
[28] Castello M, Sheppard C J, Diaspro A, et al. Image scanning microscopy with a quadrant detector [J]. Opt Lett, 2015, 40(22): 5355-5358. doi:  10.1364/OL.40.005355
[29] Sheppard C J, Mehta S B, Heintzmann R. Superresolution by image scanning microscopy using pixel reassignment [J]. Opt Lett, 2013, 38(15): 2889-2892. doi:  10.1364/OL.38.002889
[30] Sauer M, Heilemann M. Single-molecule localization microscopy in eukaryotes [J]. Chem Rev, 2017, 117(11): 7478-7509.
[31] Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy [J]. Annu Rev Biochem, 2009, 78: 993-1016. doi:  10.1146/annurev.biochem.77.061906.092014
[32] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nat Methods, 2006, 3(10): 793-795. doi:  10.1038/nmeth929
[33] An Sha, Dan Dan, Yu Xiang-hua, et al. Progress and prospect of research on single-molecule localization super-resolution microscopy (Invited Review) [J]. Acta Photonica Sinica, 2020, 49(9): 0918001. (in Chinese)
[34] Caicedo A, Aponte P M, Cabrera F, et al. Artificial mitochondria transfer: Current challenges, advances, and future applications [J]. Stem Cells Int, 2017, 2017: 7610414.
[35] Wang Y, Li L, Hou C, et al. SNARE-mediated membrane fusion in autophagy [J]. Semin Cell Dev Biol, 2016, 60: 97-104. doi:  10.1016/j.semcdb.2016.07.009
[36] Wong Y C, Ysselstein D, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7GTP hydrolysis [J]. Nature, 2018, 554(7692): 382-386.
[37] Boutry M, Kim P K. ORP1L mediated PI(4)P signaling at ER-lysosome-mitochondrion three-way contact contributes to mitochondrial division [J]. Nat Commun, 2021, 12(1): 5354. doi:  10.1038/s41467-021-25621-4
[38] Chen Q, Shao X, Hao M, et al. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy [J]. Biomaterials, 2020, 250: 120059. doi:  10.1016/j.biomaterials.2020.120059
[39] Wang H, Fang G, Chen H, et al. Lysosome-targeted biosensor for the super-resolution imaging of lysosome-mitochondrion interaction [J]. Front Pharmacol, 2022, 13: 865173. doi:  10.3389/fphar.2022.865173
[40] Maruyama D, Ohtsu M, Higashiyama T. Cell fusion and nuclear fusion in plants [J]. Semin Cell Dev Biol, 2016, 60: 127-135. doi:  10.1016/j.semcdb.2016.07.024
[41] Eisenberg-Bord M, Zung N, Collado J, et al. Cnm1 mediates nucleus-mitochondria contact site formation in response to phospholipid levels [J]. J Cell Biol, 2021, 220(11): e202104100. doi:  10.1083/jcb.202104100
[42] Desai R, East D A, Hardy L, et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response [J]. Sci Adv, 2020, 6(51): eabc9955. doi:  10.1126/sciadv.abc9955
[43] Michishita E, Park J Y, Burneskis J M, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins [J]. Mol Biol Cell, 2005, 16(10): 4623-4635. doi:  10.1091/mbc.e05-01-0033
[44] Ramadani-Muja J, Gottschalk B, Pfeil K, et al. Visualization of sirtuin 4 distribution between mitochondria and the nucleus, Based on bimolecular fluorescence self-complementation [J]. Cells, 2019, 8(12): 1583. doi:  10.3390/cells8121583
[45] Ivanov A I, Le H T, Naydenov N G, et al. Novel functions of the septin cytoskeleton: Shaping Up tissue inflammation and fibrosis [J]. Am J Pathol, 2021, 191(1): 40-51. doi:  10.1016/j.ajpath.2020.09.007
[46] Weber K, Osborn M. Cytoskeleton: definition, structure and gene regulation [J]. Pathol Res Pract, 1982, 175(2-3): 128-145. doi:  10.1016/S0344-0338(82)80104-0
[47] Kuznetsov A V, Javadov S, Grimm M, et al. Crosstalk between mitochondria and cytoskeleton in cardiac cells [J]. Cells, 2020, 9(1): 222. doi:  10.3390/cells9010222
[48] Moore A S, Coscia S M, Simpson C L, et al. Actin cables and comet tails organize mitochondrial networks in mitosis [J]. Nature, 2021, 591(7851): 659-664. doi:  10.1038/s41586-021-03309-5
[49] Shi P, Wang Y, Huang Y, et al. Arp2/3-branched actin regulates microtubule acetylation levels and affects mitochondrial distribution [J]. J Cell Sci, 2019, 132(6): jcs226506.
[50] Mehta K, Chacko L A, Chug M K, et al. Association of mitochondria with microtubules inhibits mitochondrial fission by precluding assembly of the fission protein Dnm1 [J]. J Biol Chem, 2019, 294(10): 3385-3396. doi:  10.1074/jbc.RA118.006799
[51] Rambold A S, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics [J]. Dev Cell, 2015, 32(6): 678-692. doi:  10.1016/j.devcel.2015.01.029
[52] Li Z, Thiel K, Thul P J, et al. Lipid droplets control the maternal histone supply of Drosophila embryos [J]. Curr Biol, 2012, 22(22): 2104-2113. doi:  10.1016/j.cub.2012.09.018
[53] Murphy D J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms [J]. Prog Lipid Res, 2001, 40(5): 325-438. doi:  10.1016/S0163-7827(01)00013-3
[54] Walther T C, Chung J, Farese R J. Lipid droplet biogenesis [J]. Annu Rev Cell Dev Biol, 2017, 33: 491-510. doi:  10.1146/annurev-cellbio-100616-060608
[55] Pribasnig M, Kien B, Pusch L, et al. Extended-resolution imaging of the interaction of lipid droplets and mitochondria [J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(10): 1285-1296.
[56] Gemmink A, Daemen S, Kuijpers H, et al. Super-resolution microscopy localizes perilipin 5 at lipid droplet-mitochondria interaction sites and at lipid droplets juxtaposing to perilipin 2 [J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(11): 1423-1432.
[57] Perkins H T, Allan V. Intertwined and finely balanced: Endoplasmic reticulum morphology, Dynamics, Function, and Diseases [J]. Cells, 2021, 10(9): 2341. doi:  10.3390/cells10092341
[58] Valm A M, Cohen S, Legant W R, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome [J]. Nature, 2017, 546(7656): 162-167. doi:  10.1038/nature22369
[59] Reggiori F, Molinari M. ER-phagy: Mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum [J]. Physiol Rev, 2022, 102(3): 1393-1448. doi:  10.1152/physrev.00038.2021
[60] Georgiades P, Allan V J, Wright G D, et al. The flexibility and dynamics of the tubules in the endoplasmic reticulum [J]. Sci Rep, 2017, 7(1): 16474. doi:  10.1038/s41598-017-16570-4
[61] Jung M, Mun J Y. Mitochondria and endoplasmic reticulum imaging by correlative light and volume electron microscopy [J]. J Vis Exp, 2019, 149: e59750. doi:  10.3791/59750
[62] Nixon-Abell J, Obara C J, Weigel A V, et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER [J]. Science, 2016, 354(6311): aaf3928. doi:  10.1126/science.aaf3928
[63] Schroeder L K, Barentine A, Merta H, et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy [J]. J Cell Biol, 2019, 218(1): 83-96. doi:  10.1083/jcb.201809107
[64] Guo Y, Li D, Zhang S, et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales [J]. Cell, 2018, 175(5): 1430-1442. doi:  10.1016/j.cell.2018.09.057
[65] Lewis S C, Uchiyama L F, Nunnari J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells [J]. Science, 2016, 353(6296): f5549. doi:  10.1126/science.aaf5549
[66] Qiao C, Li D, Guo Y, et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy [J]. Nat Methods, 2021, 18(2): 194-202. doi:  10.1038/s41592-020-01048-5
[67] Gottschalk B, Klec C, Waldeck-Weiermair M, et al. Intracellular Ca2+ release decelerates mitochondrial cristae dynamics within the junctions to the endoplasmic reticulum [J]. Pflugers Arch, 2018, 470(8): 1193-1203. doi:  10.1007/s00424-018-2133-0
[68] Filipe A, Chernorudskiy A, Arbogast S, et al. Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy [J]. Cell Death Differ, 2021, 28(1): 123-138. doi:  10.1038/s41418-020-0587-z
[69] Raiborg C, Wenzel E M, Pedersen N M, et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth [J]. Nature, 2015, 520(7546): 234-238. doi:  10.1038/nature14359
[70] Pavez M, Thompson A C, Arnott H J, et al. STIM1 Is required for remodeling of the endoplasmic reticulum and microtubule cytoskeleton in steering growth cones [J]. J Neurosci, 2019, 39(26): 5095-5114. doi:  10.1523/JNEUROSCI.2496-18.2019