[1] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas(1994-present), 1995, 2(11): 3933-4024.
[2] Wang Ganchang. A brief review of the progress of laser inertial confinement fusion in recent years[J]. Nuclear Science and Engineering, 1997, 17(3): 266-269. (in Chinese)王淦昌. 激光惯性约束核聚变(ICF)最新进展简述[J]. 核科学与工程, 1997, 17(3): 266-269.
[3]

Nuckolls J H. The feasibility of inertial-confinement fusion[J]. Physics Today, 2008, 35(9): 24-31.
[4]

Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[J]. MRS Bulletin, 1994, 30: 899-901.
[5]

Brown S C. Basic Data of Plasma Physics: The Fundamental Data on Electrical Discharges in Gases[M]. US: American Institute of Physics, 1994.
[6]

Lehmberg R H, Obenschain S P. Use of induced spatial incoherence for uniform illumination of laser fusion targets[J]. Optics Communications, 1983, 46(1): 27-31.
[7]

Bodner S E, Colombant D G, Gardner J H, et al. Direct-drive laser fusion: status and prospects[J]. Physics of Plasmas(1994-present), 1998, 5(5): 1901-1918.
[8]

Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462.
[9]

Igumenshchev I V, Seka W, Edgell D H, et al. Crossed-beam energy transfer in direct-drive implosions a)[J]. Physics of Plasmas (1994-present), 2012, 19(5): 056314.
[10]

Grun J, Decoste R, Ripin B H, et al. Characteristics of ablation plasma from planar, laser-driven targets[J]. Applied Physics Letters, 1981, 39(7): 545-547.
[11] Jin Guangyong, Fan Wei, Wang Chao, et al. Research on solid laser high-repetition-rate electrooptical Q-switch[J]. Infrared and Laser Engineering, 2007, 36(Z1): 307-309. (in Chinese)金光勇, 范薇, 王超, 等. 固体激光高重复率电光Q开关研究[J]. 红外与激光工程, 2007, 36(Z1): 307-309.
[12]

Ebstein S. Method and apparatus for adjusting the focal length of an optical system: US, 5,091,801[P]. 1992-02-25.
[13]

Fujiura K, Imai T, Miyazu J, et al. Variable-focal length lens: US, 8,014,061[P]. 2011-09-06.
[14]

Imai T, Yagi S, Toyoda S, et al. Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations[J]. Applied Optics, 2012, 51(10): 1532-1539.
[15] Zhou Xiaodong, Liu Zaijian. The zoom lens and imaging device: China, 201220181573.5[P]. 2012-12-12. (in Chinese)周晓东, 柳在健. 变焦透镜和成像设备: 中国, 201220181573.5[P]. 2012-12-12.
[16]

Imai T, Yagi S, Toyoda S, et al. Fast response variable focal-length lenses using KTa1-xNbxO3 crystals[J]. Applied Physics Express, 2011, 4(2): 022501.
[17] Zhong Zheqiang, Zhou Bingjie, Ye Rong, et al. A novel scheme of beam smoothing using multi-central frequency and multi-color smoothing by spectral dispersion[J]. Acta Physica Sinica, 2014, 63(3): 035201. (in Chinese)钟哲强, 周冰洁, 叶荣, 等. 多频多色光谱角色散束匀滑新方案[J]. 物理学报, 2014, 63(3): 035201.
[18] Li Bo. Theoretical research on transmission of Gauss beam in photorefractive crystals[D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese)李博. 高斯光束在光折变晶体中传输的理论研究[D]. 武汉: 华中科技大学, 2008.
[19] Chen Shouman, Shi Shunxiang, Dong Hongzhou. Evolution of Gaussian beams in photorefractive crystal biased spatial modulation electric field[J]. Acta Optica Sinica, 2007, 27(1): 166-170. (in Chinese)陈守满, 石顺祥, 董洪舟. 高斯光束在外加空间调制电场的光折变晶体中的演化[J]. 光学学报, 2007, 27(1): 166-170.
[20]

Shen Y R. The Principles of Nonlinear Optics[M]. New York: Wiley-Interscience, 1984: 575.