[1] Bell A G. Upon the production and reproduction of sound by light[J]. American Journal of Science, 1880, 20(118):305-324.
[2] Brody H. Medical imaging[J]. Nature, 2013. 502(7473):S81.
[3] Cox B, Laufer J G, Arridge S R, et al. Quantitative spectroscopic photoacoustic imaging:a review[J]. Journal of Biomedical Optics, 2012, 17(6):061202.
[4] Greneur C L, Sagot B. Biomedical photoacoustic imaging patent landscape[R]. New York:Knowmade Company, 2015.
[5] Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications[J]. Nature Photonics, 2015, 9(4):219-227.
[6] Wang L H V, Hu S. Photoacoustic tomography:in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075):1458-1462.
[7] Yao J J, Wang L H V. Photoacoustic microscopy[J]. Laser Photonics Reviews, 2013, 7(5):758-778.
[8] Zackrisson S, van de Ven S M W Y, Gambhir S S. Light in and sound out:emerging translational strategies for photoacoustic imaging[J]. Cancer Research, 2014, 74(4):979-1004.
[9] Wang L H, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 2016, 13(8):627-638.
[10] Vengerov M. An optical-acoustic method of gas analysis[J]. Nature, 1946, 158(4001):28-29.
[11] Michaels J E. Thermal impact-the mechanical response of solids to extreme electromagnetic radiation[J]. Planetary and Space Science, 1961, 7:427-433.
[12] White R M. Generation of elastic waves by transient surface heating[J]. Journal of Applied Physics, 1963, 34(12):3559-3567.
[13] Amar L, Bruna M, Velghe M, et al. On Detection of laser induced ultrasonic waves in human eye and elaboration of a theory on fundamental mechanism of vision[J]. Zeitschrift Fur Angewandte Mathematik Und Physik, 1965, 16(1):182-183.
[14] Kreuzer L B. Ultralow gas concentration infrared absorption spectroscopy[J]. Journal of Applied Physics, 1971, 42(7):2934-2943.
[15] Bowen T. Radiation-induced thermoacoustic soft-tissue imaging[J]. IEEE Transactions on Sonics and Ultrasonics, 1982, 29(3):197737.
[16] Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids[J]. Journal of Applied Physics, 1976, 47(1):64-69.
[17] Rosencwaig A. Photoacoustics and photoacoustic spectroscopy[M]. New York:Wiley, 1980.
[18] Kruger R A, Liu P, Fang Y R, et al. Photoacoustic ultrasound(Paus)-reconstruction tomography[J]. Medical Physics, 1995, 22(10):1605-1609.
[19] Kruger R A, Liu P Y. Photoacoustic ultrasound-pulse production and detection in 0.5-percent Liposyn[J]. Medical Physics, 1994, 21(7):1179-1184.
[20] Kruger R A. Photoacoustic ultrasound[J]. Medical Physics, 1994, 21(1):127-131.
[21] Oraevsky A A, Esenaliev R O, Jacques S L, et al. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers[C]//SPIE, 1995, 2389:198-208.
[22] Esenaliev R O, Oraevsky A A, Jacques S L, et al. Laser optoacoustic tomography for medical diagnostics:experiments with biological tissues[C]//SPIE, 1996, 2676:10.1117/12, 238817.
[23] Oraevsky A A, Jacques S L, Tittel F K. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves[C]//SPIE, 1993, 1882:86-101.
[24] Waldner M J, Knieling F, Egger C, et al. Multispectral optoacoustic tomography in Crohn's disease:noninvasive imaging of disease activity[J]. Gastroenterology, 2016, 151(2):238-240.
[25] Vionnet L, Tateau J, Schwarz M, et al. 24-MHz scanner for optoacoustic imaging of skin and burn. medical imaging[J]. IEEE Transactions on Medical Imaging, 2014, 33(2):535-545.
[26] Tzoumas S, Antonio N, Nikolaos C, et al. Effects of multispectral excitation on the sensitivity of molecular optoacoustic imaging[J]. Journal of Biophotonics, 2015, 8(8):629-637.
[27] Taruttis A, Morscher S, Burton N C, et al. Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs[J]. PLoS One, 2012, 7(1):e30491.
[28] Stoffels I, Morscher S, Helfrich I, et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging[J]. Science Translational Medicine, 2015, 7(317):317ra199.
[29] Sela G, Lauri A, Deanben X L, et al. Functional optoacoustic neuro-tomography (FONT) for whole-brain monitoring of calcium indicators[J]. Quantitative Biology, 2015, arXiv:1501.02450.
[30] Razansky D, Baeten J, Ntziachristos V. Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT)[J]. Medical Physics, 2009, 36(3):939-945.
[31] Petrova E V, Oraevsky A A, Ermilov S A. Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring[J]. Applied Physics Letters, 2014, 105(9):094103.
[32] Oraevsky A A, Jacques S L, Tittel F K, et al. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers in optical tomography, photon migration, and spectroscopy of tissue and model media:theory, human studies, and instrumentation[C]//SPIE, 1995.
[33] Nikitin S M, Khokhlova T D, Pelivanov I M. Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies[J]. Journal of Biomedical Optics, 2012, 17(6):061214.
[34] Herzog E, Taruttis A, Beziere N, et al. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography[J]. Radiology, 2012, 263(2):461-468.
[35] Esenaliev R O, Oraevsky A A, Jacques S L, et al. Laser optoacoustic tomography for medical diagnostics:experiments with biological tissues. in biomedical sensing, imaging, and tracking technologies I[C]//SPIE, 1996, 2676:238817.
[36] Deliolanis N C, Ale A, Morscher S, et al. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography:A performance overview[J]. Mol Imaging Biol, 2014, 16(5):652-660.
[37] Dean-Ben X L, Razansky D. Adding fifth dimension to optoacoustic imaging:volumetric time-resolved spectrally enriched tomography[J]. Light-Science Applications, 2014, 3:e137.
[38] Brecht H P, Su R, Fronheiser M, et al. Whole-body three-dimensional optoacoustic tomography system for small animals[J]. Journal of Biomedical Optics, 2009, 14(6):064007.
[39] Bost W, Stracke F, Wei B E C, et al. High frequency optoacoustic microscopy[C]//IEEE Eng Med Biol Soc, 2009, 2009:5883-5886.
[40] Wang X D, Pang Y, Ku G, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nature Biotechnology, 2003, 21(7):803-806.
[41] Zhang H F, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 2006, 24(7):848-851.
[42] de la Zerda A, Lius Z, Bodapati S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice[J]. Nature Nanotechnology, 2008, 3(9):557-562.
[43] Kim J W, Galanzha E I, Shashkov E V, et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nature Nanotechnology, 2009, 4(10):688-694.
[44] Razansky D, Distel M, Vinegoni C, et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo[J]. Nature Photonics, 2009, 3(7):412-417.
[45] Yang J M, Favazza C, Chen R, et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo[J]. Nature Medicine, 2012, 18(8):1297-1302.
[46] Pu K Y, Shuhendler A J, Jokerst J V, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice[J]. Nature Nanotechnology, 2014, 9(3):233-239.
[47] Jathoul A P, Laufer J, Ogulade O, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter[J]. Nature Photonics, 2015, 9(4):239-246.
[48] Yao J, Wang L, Yang J M, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nature methods, 2015, 12(5):407-410.
[49] Yao J, Kaberniuk A A, Li L, et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe[J]. Nature Methods, 2016, 13(1):67-73.
[50] Manohar S, Razansky D. Photoacoustics:a historical review[J]. Advances in Optics and Photonics, 2016, 8(4):586-617.
[51] Jansen K, Van A F, Beusekm van H M, et al. Intravascular photoacoustic imaging of human coronary atherosclerosis[J]. Optics Letters, 2011, 36(5):597-599.
[52] Xia J, Chatni M R, Maslov K, et al. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo[J]. Journal of Biomedical Optics, 2012, 17(5):050506.
[53] Xia J, Yao J, Wang L V. Photoacoustic tomography:principles and advances[J]. Electromagn Waves(Camb), 2014, 147:1-22.
[54] Mallidi S, Watanabe K, Timerman D, et al. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging[J]. Theranostics, 2015, 5(3):289-301.
[55] Fakhrejahani E, Torri M, Kitai T, et al. Clinical report on the first prototype of a photoacoustic tomography system with dual illumination for breast cancer imaging[J]. PLoS One, 2015, 10(10):e0139113.
[56] Kruger R A, Lam R B, Reineche D R, et al. Photoacoustic angiography of the breast[J]. Medical Physics, 2010. 37(11):6096-6100.
[57] Heijblom M, Lam R B, Reinecke D R, et al. Visualizing breast cancer using the Twente photoacoustic mammoscope:What do we learn from twelve new patient measurements[J]. Optics Express, 2012, 20(11):11582-11597.
[58] Xing W X, Wang L D, Maslov K, et al. Integrated optical-and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle[J]. Optics Letters, 2013, 38(1):52-54.
[59] Yoon T J, Cho Y S. Recent advances in photoacoustic endoscopy[J]. World J Gastrointest Endosc, 2013, 5(11):534-539.
[60] Wang P, Ma T, Slipohenko M N, et al. High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser[J]. Sci Rep, 2014, 4:6889.
[61] Bohndiek S E, Bodapati S, Dominique van De Sompel, et al. Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments[J]. PLoS One, 2013, 8(9):e75533.
[62] Mehrmohammadi M, Yoom S J, Yeager D, et al. Photoacoustic imaging for cancer detection and staging[J]. Curr Mol Imaging, 2013, 2(1):89-105.
[63] American national standard for the safe use of lasers[S]. New York:American National Standard Institute, 2007.
[64] Shigeta Y, Agano T, Sato N, et al. Detection of ICG at low concentrations by photoacoustic imaging system using LED light source[C]//SPIE, 2017:100644x:doi 10.1117/12.2251678.
[65] Agano T, Sato N. Photoacoustic imaging system using LED light source[C]//2016 Conference on Lasers and Electro-Optics (Cleo), 2016:ATh3N.5.
[66] Zhang Y, Jeon M, Rich L J, et al. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines[J]. Nature Nanotechnology, 2014. 9(8):631-638.
[67] Talukdar Y, Avti P, Sun J, et al. Multimodal ultrasound-photoacoustic imaging of tissue engineering scaffolds and blood oxygen saturation in and around the scaffolds[J]. Tissue Engineering Part C, Methods, 2014, 20(5):440-449.
[68] Song W, Wei Q, Liu T, et al. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform[J]. Journal of Biomedical Optics, 2012, 17(6):061206.
[69] Kim J, Lee D, Jung U, et al. Photoacoustic imaging platforms for multimodal imaging[J]. Ultrasonography, 2015, 34(2):88-97.
[70] Akers W J, Edwards W B, Kim C, et al. Multimodal sentinel lymph node mapping with single-photon emission computed tomography(SPECT)/computed tomography(CT) and photoacoustic tomography[J]. Translational Research, 2012, 159(3):175-181.
[71] Kim J, Park S, Jung Y, et al. Programmable real-time clinical photoacoustic and ultrasound imaging system[J]. Scientific Reports, 2016, 6:35137.
[72] Yao J, Xia J, Wang L V. Multiscale functional and molecular photoacoustic tomography[J]. Ultrasonic Imaging, 2016, 38(1):44-62.
[73] Wilson K E, Wang T Y, Willmann J K. Acoustic and photoacoustic molecular imaging of cancer[J]. Journal of Nuclear Medicine, 2013, 54(11):1851-1854.
[74] Li M, Oh Jung-Tack, Xie Xueyi, et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography[J]. Proceedings of the IEEE, 2008, 96(3):481-489.
[75] Levi J, Kothapalli S R, Bohndiek S, et al. Molecular photoacoustic imaging of follicular thyroid carcinoma[J]. Clinical Cancer Research, 2013, 19(6):1494-1502.
[76] Kircher M F, Adam de la Zerda, Jess V Jokerst, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle[J]. Nature Medicine, 2012, 18(5):829-U235.
[77] Kim C, Favazza C, Wang L V. In vivo photoacoustic tomography of chemicals:high-resolution functional and molecular optical imaging at new depths[J]. Chem Rev, 2010, 110(5):2756-2782.
[78] de la Zerda A, Kim J-W, Galanzha E, et al. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics[J]. Contrast Media Molecular Imaging, 2011, 6(5):346-369.
[79] Ray A, Wang X D, Lee Y, et al. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation[J]. Nano Research, 2011, 4(11):1163-1173.
[80] Galanzha E I, Nedosekin D A, Sarimollaoglu M, et al. Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances[J]. Journal of Biophotonics, 2013, 8(1):81-93.
[81] Brannon-Peppas L, Blanchette J O. Nanoparticle and targeted systems for cancer therapy[J]. Adv Drug Deliv Rev, 2004, 56(11):1649-1659.
[82] Zhang Y S, Wang Y, Wan L D, et al. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy[J]. Theranostics, 2013, 3(8):532-543.
[83] Danielli A, Maslov K, Garcia-Uribe A, et al. Label-free photoacoustic nanoscopy[J]. Journal of Biomedical Optics, 2014, 19(8):086006.