[1] Jia Yong, Zhang Wei, Zhang Ruimin, et al. Simulation of surface crack detection of TC4 curvature structure by ultrasonic infrared thermography[J]. Surface Technology, 2018, 47(10):302-308. (in Chinese)
[2] Jiang Haijun, Chen Li, Wei Yibing, et al. Application of ultrasonic thermography to crack detection of aero-engine blades[C]//Far East Nondestructive Testing New Technology Forum, 2018:618-621. (in Chinese)
[3] He Y, Chen S, Zhou D, et al. Shared excitation based nonlinear ultrasound and vibrothermography testing for CFRP barely visible impact damage inspection[J]. IEEE Transactions on Industrial Informatics, 2018, 85(8):1332-1334.
[4] Fierro G M, Calla D, Ginzburg D, et al. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures[J]. Journal of Sound and Vibration, 2017, 404:102-115.
[5] Li Yin, Tian Gan, Yang Zhengwei, et al. Detection capability evaluation of low velocity impact damage in composites using ultrasonic infrared thermography[J]. Chinese Journal of Scientific Instrument, 2016, 37(5):1124-1130. (in Chinese)
[6] Feng Fuzhou, Zhang Chaosheng, Min Qingxu, et al. Heating characteristics of metal plate crack in sonic IR imaging[J]. Infrared and Laser Engineering, 2015, 44(5):1456-1461. (in Chinese)
[7] Kou Guangjie, Yang Zhengwei, Jia Yong, et al. Detection on cracks in blades with complex profile based on ultrasonic infrared thermal imaging[J]. Infrared and Laser Engineering, 2019, 48(12):1204002. (in Chinese)
[8] Tian Gan, Yang Zhengwei, Zhu Jietang, et al. Vibration characteristics and acoustic chaos analysis in ultrasonic infrared thermal wave detection[J]. Infrared and Laser Engineering, 2016, 45(3):0304003. (in Chinese)
[9] Henneke E G, Reifsnider K L, Stinchcomb W W. Thermography-An NDI method for damage detection[J]. Journal of Metals, 1979, 31(9):11-15.
[10] Reifsnider K L, Henneke E G, Stinchcomb W W. The Mechanics of Vibrothermography[M]//Mechanics of Nondestructive Testing. Boston:Springer, 1980.
[11] Mi Xiaobing, Zhang Shuyi. Numerical calculation of the heating generated by microcracks in ultrasonic infrared imaging[J]. Technical Acoustics, 2003, 22(z2):279-281. (in Chinese)
[12] Zheng Jiang, Zheng Kai, Zhang Shuyi. Effect of position of ultrasonic excitation source on thermosonic image of cracks[J]. Nondestructive Testing, 2009, 31(12):946-949. (in Chinese)
[13] Han X Y, Newaz G, Islam M S, et al. Finite element modeling of the heating of cracks during sonic infrared imaging[J]. Journal of Applied Physics, 2006, 99(7):74905.
[14] Liu Hui. Research on ultrasound infrared lock-in thermography for non-destructive testing[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
[15] Guo Xingwang, Li Bin. Modeling and analysis of vibrothermography of cracks in heavy aluminum alloy structures[J]. Journal of Mechanical Engineering, 2014, 50(24):31-37. (in Chinese)
[16] Ma Fengnian, Guo Xingwang. Modeling and analysis of vibrothermography for the detection of microcracks[J]. Nondestructive Testing, 2015, 37(9):6-10. (in Chinese)
[17] Vaddi J S. Vibration modeling for vibrothermography[D]. Iowa:Iowa State University, 2015.
[18] Han X, Loggins V, Zeng Z, et al. Mechnical model for the generation of acoustic chaos in sonic infrared imaging[J]. Applied Physics Letters, 2004, 85(8):1332-1334.
[19] Li Yin, Ming Anbo, Zhang Ruimin, et al. Investigation into vibration characteristic in vibrothermography[J]. Photonic Sensors, 2019, 9(2):108-114.
[20] Hou Zhenbing, He Shaojie, Li Shuxian. Solid Heat Conduction[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984:68-94. (in Chinese)