[1] Leon Shterengas, Rui Liang, Gela Kipshidze, et al. Type-I quantum well cascade diode lasers emitting near 3m[J]. Appl Phys Lett, 2013, 103(12):121108.
[2] Grau M, Lin C, Dier O, et al. Room-temperature operation of 3.26m GaSb-based type-I lasers with quinternary AlGaInAsSb barriers[J]. Appl Phys Lett, 2005, 87(24):241104.
[3] Gaimard Q, Nguyen-Ba T, Larrue A, et al. Distributed-feedback GaSb-based laser diodes in the 2.3 to 3.3m wavelength range[J]. Semiconductor Lasers and Laser Dynamics Vi, 2014, 9134:2052115.
[4] Yang R Q, Pei S S J. Novel type-Ⅱ quantum cascade lasers[J]. J Appl Phys, 1996, 79(11):8197-8203.
[5] Meyer J R, Ho_man C A, Bartoli F J, et al. Type-Ⅱ quantum-well lasers for the mid-wavelength infrared[J]. Appl Phys Lett, 1995, 67(6):757-759.
[6] Thompson G H B, Kirkby P. (GaAl)As lasers with a heterostructure for optical confinement and additional heterojunctions for extreme carrier confinement[J]. IEEE J Quantum Electron, 1973, 9(2):311-318.
[7] Sirtori C, Faist J, Capasso F, et al. Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4m wavelength[J]. Appl Phys Lett, 1995, 66(24):3242-3244.
[8] Yang R Q. Infrared laser based on intersubband transitions in quantum wells[J]. Superlatticeand Microdevices, 1995, 17(1):1017.
[9] Lin Chih-Hsiang, Yang Q, Zhang D, et al. Type Ⅱ interband quantum cascade laser at 3.8m[J]. Electronics Letters, 2015, 33(7):598-599.
[10] Yang R Q, Bruno J D, Bradshaw J L, et al. High-power interband cascade lasers with quantum efficiency 450%[J]. Electronics Letters, 1999, 35(15):1254-1255.
[11] Bradshaw J L, Yang R Q, Bruno J D, et al. High-efficiency interband cascade lasers with peak power exceeding 4 W/facet[J]. Appl Phys Lett, 1999, 75(16):2362-2364.
[12] Bradshaw J L, Bruno J D, Pham J T, et al. Continuous wave operation of type-Ⅱ interband cascade lasers[J].IEEE Proc Optoelectron, 2000, 147:177-180.
[13] Bruno J D, Bradshaw J L, Yang R Q, et al. Low-threshold interband cascade lasers with power efficiency exceeding 9%[J]. Appl Phys Lett, 2000, 76(22):3167-3169.
[14] Bradshaw J L, Pham J T, Yang R Q, et al. Enhanced CW performance of the interband cascade laser using improved device fabrication[J]. IEEE J Select Top Quantum Electron, 2001, 37(2):102-105.
[15] Yang R Q, Bradshaw J L, Bruno J D, et al. Power, efficiency, and thermal characteristics of type-Ⅱ interband cascade lasers[J]. IEEE J Select Top Quantum Elctron, 2001, 37(2):282-289.
[16] Yang R Q, Bradshaw J L, Bruno J D, et al. Room temperature type-Ⅱ interband cascade laser[J].Appl Phys Lett, 2002, 81(3):397-399.
[17] Yang R Q, Hill C J, Christensen L E, et al. Mid-IR type-Ⅱ interband cascade lasers and their applications[C]//Proc of SPIE, 2005, 5624:413-422.
[18] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Appl Phys Lett, 2005, 87(15):151109.
[19] Hill C J, Yang R Q. MBE growth optimization of Sb-based interband cascade lasers[J]. J Cryst Growth, 2005, 278(1):167-172.
[20] Mansour K, Qiu Y, Hill C J, et al. Mid-infrared interband cascade lasers at thermoelectric cooler temperatures[J]. Electron Lett, 2006, 42(18):1034-1035.
[21] Yang R Q, Hill C J, Mansour K, et al. Distributed feedback mid-IR interband cascade lasers at thermoelectric cooler temperatures[J]. IEEE J Select Top Quantum Elctron, 2007, 13(5):1074-1078.
[22] Kim M, Canedy C L, Bewley W W, et al. Interband cascade laser emitting at 3.75 in continuous wave above room temperature[J]. Appl Phys Lett, 2008, 92(19):191110.
[23] Vurgaftman I, Bewley W W, Canedy C L, et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature Communications, 2011, 2(1):1585-1595.
[24] Robert Weih, Martin Kamp, Sven Hfling, et al. Interband cascade lasers with room temperature threshold current densities below 100 A/cm2[J]. Appl Phys Lett, 2013, 102(23):231123.
[25] Bewley W W, Kim C S, Canedy C L, et al. High-power CW performance of 7-stage interband cascade lasers[J]. Opt Express, 2014, 22(7):7702-7710.