[1] Eckstein J N, Ferguson A I, Hnsch T W. High-resolution two-photon spectroscopy with picosecond light pulses[J]. Phys Rev Lett, 1978, 40:847.
[2] Ell R, Morgner U, Krtner F X, et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser[J]. Opt Lett, 2011, 26:373.
[3] Ranka J K, Winder R S, Stentz A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt Lett, 2000, 25:25-27.
[4] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288:635.
[5] Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D. H, Keller U. Carrier-envelope offset phase control:A novel concept for absolute optical frequency measurement and ultrashort pulse generation[J]. Appl Phys B, 1999, 69:327.
[6] Diddams S A. The evolving optical frequency comb[J]. JOSA B, 2010, 27:B51-B62.
[7] Ye J, Cundiff S T. Femtosecond optical Frequency Comb Technology:Principle, Operation and Application[M] Berlin:Springer, 2005.
[8] Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Phys Rev Let, 2000, 5102:84.
[9] Udem Th, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 233:416.
[10] Holzwarth R, Udem Th, Hnsch T W, et al. Optical frequency synthesizer for precision spectroscopy[J]. Phys Rev Let, 2000, 85:2264-2275.
[11] Ma L S, Bi Z, Bartels A, L, et al. Optical frequency synthesis and comparison with uncertainty at the 10-19 level[J]. Science, 2004, 303:1843-1848.
[12] Takamoto M, Hong F L, Higashi R, et al. An optical lattice clock[J]. Nature, 2005, 435:321-324.
[13] Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th Decimal Place[J]. Science, 2008, 319:1808-1812.
[14] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506:71.
[15] Blatt S, Ludlow A D, Campbell G K, et al. New limits on coupling of fundamental constants to gravity using 87 Sr optical lattice clock[J]. Phys Rev Lett, 2008, 100:140801.
[16] Kolkowitz S, Pikovski I, Langellier N, et al. Gravitational wave detection with optical lattice atomic clocks[J]. Phys Rev D, 2016, 94:124043.
[17] Julien Mandon, Guy Guelachvili, Nathalie Picqu. Fourier transform spectroscopy with a laser frequency comb[J]. Nature Photon, 2009, 3:99.
[18] Joohyung Lee, Young Jin Kim, Keunwoo Lee, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photon, 2010, 4:716.
[19] Yoshiaki Nakajima, Kaoru Minoshima. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement[J]. Opt Express, 2015, 23:25979.
[20] van den Berg S A, Persijn S T, Kok G J P, et al. Many-wavelength interferometry with thousands of lasers for absolute distance measurement[J]. Phys Rev Lett, 2012, 108:183901.
[21] Zhao Xin, Hu Guoqing, Zhao Bofeng, et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser[J]. Opt Express, 2016, 24:21833.
[22] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photon, 2009, 3:351-356.
[23] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 2018, 359:887.
[24] Kato T, Uchida M, Minoshima K. Non-scanning three-dimensional imaging using spectral interferometry with chirped frequency comb[C]//Conference on Lasers and Electro-Optics, 2016:SW1H.4.
[25] Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Opt Express, 2011, 19:18501.
[26] Danzmann K, the LISA study team. LISA:laser interferometer space antenna for gravitational wave measurements[J]. Class Quantum Grav, 1996, 13:A247-A250.
[27] Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305:503-505.
[28] Kurita T, Yoshida H, Kawashima T, et al. Generation of sub-7-cycle optical pulses from a mode-locked ytterbium-doped single-mode fiber oscillator pumped by polarization-combined 915nm laser diodes[J]. Opt Lett, 2012, 37:3972-3974.
[29] Luo D, Liu Y, Gu C, et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification[J]. Appl Phys Lett, 2018, 112:061106.
[30] Zhou Shian, Lyuba Kuznetsova, Chong Andy, et al. Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers[J]. Opt Express, 2005, 13:4869-4877.
[31] Lyuba Kuznetsova, Frank W Wise. Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification[J]. Opt Lett, 2007, 32:2671-2673.
[32] Hung-Wen Chen, JinKang Lim, Shu-Wei Huang et al. Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression[J]. Opt Express, 2012, 20:28672-28682.
[33] Schibli T R, Hartl I, Yost D C, et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power[J]. Nature Photon, 2008, 2:355-359.