[1] 龚思夏. 基于APD的光子计数成像系统研究与设计 [D]. 南京: 南京理工大学, 2010.
[2]

Denvir D J, Conroy E. Electron multiplying CCD technology: The new ICCD [C]//Proceedings of SPIE, 2002, 4796: 164-174.
[3]

Stewart A G, Greene-O′Sullivan E, Herbert D J, et al. Study of the properties of new SPM detectors [C]//Proceedings of SPIE, 2006, 6119: 61190A.
[4]

John Degnan, David Wells, Roman Machan, et al. Second generation airborne 3D imaging lidars based on photon counting [C]//Proceedings of SPIE, 2007, 6771: 67710N.
[5]

Ge Peng, Guo Jingjing, Chen Cong, et al. Photon-counting 3D imaging based on Geiger-mode APD array [J]. Infrared and Laser Engineering, 2022, 49(3): 0305007. (in Chinese) doi:  10.3788/IRLA202049.0305007
[6]

Shi Zhu, Dai Qian, Song Haizhi, et al. Low dark count rate InGaAsP/InP SPAD [J]. Infrared and Laser Engineering, 2017, 46(12): 1220001. (in Chinese) doi:  10.3788/IRLA201746.1220001
[7]

Beck J D, Scritchfield R, Mitra P, et al. Linear mode photon counting with the noiseless gain HgCdTe e-APD [C]//Proceedings of the SPIE, 2011, 8033: 80330N.
[8]

Leveque G. Ionization energies in HgxCd1-xTe avalanche photodiodes [J]. Semiconductor Science and Technology, 1993, 8: 1317-1323. doi:  10.1088/0268-1242/8/7/021
[9]

Derelle S, Bernhardt S, Haidar R, et al. Experimental performances and Monte Carlo modelling of LWIR HgCdTe avalanche photodiodes [J]. Journal of Electronic Materials, 2009, 38(8): 1628-1636. doi:  10.1117/12.821185
[10]

Rothman J, de Borniol E, Gravrand O, et al. HgCdTe APD-focal plane array development at DEFIR [C]//Proceedings of SPIE, 2010, 7834: 78340O.
[11]

Jack M, Wehner J , Edwards J, et al. HgCdTe APD-based Linear-Mode photon counting components and LADAR receivers [C]//Proceedings of SPIE, 2011, 8033: 80330M.
[12] 陈博. 基于APD的光子计数成像系统的开发与实验研究 [D]. 南京: 南京理工大学, 2012.
[13]

Asbrocka J, Baileya S, Baleya D, et al. Ultra-High sensitivity APD based 3 D LADAR sensors: linear mode photon counting LADAR camera for the ultra-sensitive detector program [C]//Proceedings of the SPIE, 2008, 6940: 69402O.
[14]

De Lyon T J, Baumgratz B, Chapman G, et al. MBE growth of HgCdTe avalanche photodiode structures for low-noise 1.55 μm photodetection [J]. Journal of Crystal Growth, 1999, 201-202: 980-984. doi:  https://doi.org/10.1016/S0022-0248(98)01506-1
[15]

Bryan M L, Chapman G, Hall D N B, et al. Investigation of linear-mode, photon-counting HgCdTe APDs for astronomical observations [C]//Proceedings of SPIE, 2012, 8453: 84532F.
[16]

Michael Jack, George Chapman, John Edwards, et al. Advances in LADAR components and subsystems at Raytheon [C]//Proceedings of SPIE, 2012, 8353: 83532F.
[17]

Beck J, Wan C, Kinch M, et al. The HgCdTe electron avalanche photodiode [J]. Journal of Electronic Materials, 2006, 35(6): 1166-1173. doi:  10.1007/s11664-006-0237-3
[18]

Singh A, Srivastav V, Pal R. HgCdTe avalanche photodiodes: A review [J]. Optics & Laser Technology, 2011, 43(7): 1358-1370. doi:  10.1016/j.optlastec.2011.03.009
[19]

William Sullivan III, Jeffrey Beck, Richard Scritchfield, et al. Linear-Mode HgCdTe avalanche photodiodes for photon-counting applications [J]. Journal of Electronic Materials, 2015, 44(9): 3092-3101. doi:  10.1007/s11664-015-3824-3
[20]

Sun Xiaoli, Abshirea James, Krainaka Michael, et al. Single photon HgCdTe avalanche photodiode and integrated detector cooler assemblies for space lidar applications [C]//Proceedings of SPIE, 2018, 10659: 106590C.
[21]

Duke A P, Beck J D, Sullivan III W, et al. Recent advancements in HgCdTe APDs for space applications [J]. Journal of Electronic Materials, 2022, 51: 6803-6814. doi:  10.1007/s11664-022-09873-4
[22]

Krainak M A, Yanga G, Sun X, et al. Novel photon-counting detectors for free-space communication [C]//Proceedings of SPIE, 2016, 9739: 97390T.
[23]

Gautier Vojetta, Fabrice Guellec, Lydie Mathieu, et al. Linear photon-counting with HgCdTe APDs [C]//Proceedings of SPIE, 2012, 8375: 83750Y.
[24]

Johan Rothmana, Eric de Borniol, Sylvette Bisotto, et al. HgCdTe APD-focal plane array development at DEFIR for low flux and photon-counting applications [C]//Quantum of Quasars Workshop, December 2-4, 2009, Grenoble, France, 2009: 1-14.
[25]

Rothman J, Lasfargues G, Abergel J. HgCdTe APDs for free space optical communications [C]//Proceedings of SPIE, 2015, 9647: 96470N.
[26]

Johan Rothman, Pierre Bleuet, Luc Andre, et al. HgCdTe APDs for free space optical communications [C]//Proceedings of SPIE, 2018, 10524: 1052411.
[27]

Rothman J, De Borniol E, Pes S, et al. HgCdTe APDs detector developments for high speed, low photon number and large dynamic range photo-detection [C]//Proceedings of SPIE, 2021, 11852: 118520F.
[28]

Pes S, Rothman J, Bleuet P, et al. Reaching GHz single photon detection rates with HgCdTe avalanche photodiodes detectors [C]//Proceedings of SPIE, 2021, 11852: 118525S.
[29]

Dani Atkinson, Donald Hall, Sean Goebel, et al. Observatory deployment and characterization of SAPHIRA HgCdTe APD arrays[C]//Proceedings of SPIE, 2018, 10709: 107091H.
[30]

Johan Rothman. Physics and limitations of HgCdTe APDs: A Review [J]. Journal of Electronic Materials, 2018, 47(10): 5657-5665. doi:  10.1007/s11664-018-6475-3
[31]

Dani Atkinson, Donald Hall, Shane Jacobson, et al. Photon-counting properties of SAPHIRA APD arrays [J]. The Astronomical Journal, 2018, 155: 220. doi:  10.3847/1538-3881/aabdeb
[32]

Timothée Greffe, Philippe Feautrier, Jean-Luc Gach, et al. C-RED One: The infrared camera using the Saphira e-APD detector [C]//Proceedings of SPIE, 2016, 9907: 99072E.
[33]

Anugu N, Le Bouquinb J-B, Monnier J D, et al. MIRC-X/CHARA: sensitivity improvements with an ultra-low noise SAPHIRA detector [C]//Proceedings of SPIE, 2018, 10701: 1070124.
[34]

Guo Huijun, Cheng Yushun, Chen Lu, et al. The performance of Mid-Wave Infrared HgCdTe e-Avalanche photodiodes at SITP [C]//Proceedings of SPIE, 2019, 11170: 111702M.
[35]

Guo Huijun, Chen Lu, Yang Liao, et al. The latest developments of HgCdTe e-APDs at SITP [C]//Proceedings of the SPIE, 2020, 11717: 1171736.
[36]

Guo Huijun, Yang Liao, Shen Chuan, et al. Developments and characterization of HgCdTe e-APDs at SITP [C]//Proceedings of SPIE, 2023, 12505: 125050C.
[37]

Li Xiongjun, Han Fuzhong, Li Lihua, et al. Gain characteristics of MW HgCdTe avalanche photodiodes [J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 175-181. (in Chinese) doi:  10.11972/j.issn.1001-9014.2019.02.009
[38]

Li Xiongjun, Zhang Yingxu, Chen Xiao, et al. Study on HgCdTe APD focal plane technology [J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 965-971. (in Chinese) doi:  10.11972/j.issn.1001-9014.2022.06.004