[1] Hu Lili, He Dongbing, Chen Huiyu, et al. Research and development of neodymium phosphate laser glass for high power laser application [J]. Optical Materials, 2017, 63: 213-220.
[2] He Dongbing, Kang Shuai, Zhang Liyan, et al. Research and development of new neodymium laser glasses [J]. High Power Laser Science and Engineering, 2017, 5: 1-6.
[3] Nikonorov N, Aseev V, Dubrovin V, et al. Design and fabrication of optical devices based on new polyfunctional photo-thermo-refractive glasses[C]//4th International Conference on Photonics, Optics and Laser Technology, IEEE, 2016: 20-27.
[4] Lumeau J, Zanotto E D. A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass [J]. International Materials Reviews, 2016, 62(6): 348-366.
[5] Snitzer E. Optical maser action of Nd3+ in barium crown glass [J]. Phys. Rev. Lett., 1961, 7(12): 444-446.
[6] 胡丽丽等. 激光玻璃及应用[M]. 上海: 上海科学技术出版社, 2019.
[7]

Campbell J H, Suratwala T I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers [J]. Journal of Non-Crystalline Solids, 2000, 263: 318-341.
[8]

Johnson G J. Springer Handbook of Lasers and Optics[M]. Germany: Springer, 2012.
[9]

Goldberg L, Hough N, Nettleton J, et al. Er/Yb glass Q-switched lasers with optimized performance[C]//Solid State Lasers XXVIII: Technology and Devices, International Society for Optics and Photonics, 2019, 10896: 1089603.
[10]

Sakimura T, Watanabe Y, Ando T, et al. 3.2 mJ, 1.5 μm laser power amplifier using an Er, Yb: glass planar waveguide for a coherent Doppler LIDAR[C]//Proceedings of 17th Coherent Laser Radar Conference. 2013.
[11]

Snitzer E, Woodcock R, Segre J. Phosphate Glass Er3+ Laser [J]. IEEE Journal Of Quantum Electronics, 1968, 4(5): 360.
[12]

Jiang S, Myers M, Peyghambarian N. Er3+ doped phosphate glasses and lasers [J]. Journal of non-crystalline solids, 1998, 239(1-3): 143-148.
[13] 冯素雅, 李顺光, 陈力, 等. 激光二极管抽运自主研制铒玻璃实现325 mW连续激光输出[J]. 中国激光, 2009, 36(8): 2181.
[14] 郭猛. 宽温度范围微型化人眼安全激光器的研究[D]; 北京: 北京工业大学, 2015.
[15]

Yang Z N, Wang H Y, Lu Q S, et al. An 80-W laser diode array with 0.1 nm linewidth for rubidium vapor laser pumping [J]. Chinese Physics Letters, 2011, 28(10): 104202-104204.
[16]

Lumeau J, Glebova L, Glebov L B. Near-IR absorption in high-purity photo-thermo-refractive glass and holographic optical elements: measurement and application for high-energy lasers [J]. Applied Optics, 2011, 50(30): 5905-5911.
[17]

Dai Huifang, Jin Yunxia, Chen Peng, et al. Broadband chirped volume Bragg grating for one-hundredfemtosecond pulse compression[C]//Tenth International Conference on Thin Film Physics and Applications, 2019.
[18]

Chen Peng, Jin Yunxia, He Dongbing, et al. Fabrication of high-precision reflective volume Bragg gratings [J]. Appl. Opt., 2019, 58: 2500-2504.
[19]

Zhao Jingyin, Jin Yunxia, He Dongbing, et al. Vortex volume gratings with high diffraction efficiency at 1064 nm [J]. Second Target Recognition and Artificial Intelligence Summit Forum, 2020: 114271M.
[20]

Chen Peng, He Dongbing, Jin Yunxia, et al. Method for precise evaluation of refractive index modulation amplitude inside the volume Bragg grating recorded in photo-thermo-refractive glass [J]. Optics Express, 2018, 26(1): 157.
[21]

Chen Peng, Jin Yunxia, He Dongbing, et al. Design and fabrication of multiplexed volume Bragg gratings as angle amplifiers in high power beam scanning system [J]. Optics Express, 2018, 26(19): 25336.