[1] Guo Xudong, Dong Tingting, Fu Yuegang, et al. Development of bionic moth-eye anti-reflective conical micro-nano structure[J]. Infrared and Laser Engineering, 2017, 46(9):0910002. (in Chinese)郭旭东, 董亭亭, 付跃刚, 等. 圆锥形仿生蛾眼抗反射微纳结构的研制[J]. 红外与激光工程, 2017, 46(9):0910002.
[2] Sun Xipeng, Xiao Zhibin, Du Yongchao. Design of broadband antireflection coating for new gallium arsenide solar[J]. Acta Optica Sinica, 2016, 36(4):0431002. (in Chinese)孙希鹏, 肖志斌, 杜永超. 新型砷化镓太阳电池的宽带减反射膜设计[J]. 光学学报, 2016, 36(4):0431002.
[3]

Raut H K. Robust and durable polyhedral oligomeric silsesquioxane-based antireflective nanostructures with broadband quasi-omnidirectional properties[J]. Energy Environ, 2013, 10(6):1929-1937.
[4]

Bernhard C G. Structural and functional adaptation in a visual system[J]. Endeavour, 1967, 2(6):79-84.
[5]

Leem J W. Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for Ⅲ-V multi-junction solar cell applications[J]. Solar Energy Mater Solar Cells, 2014:120(10):555-560.
[6]

Kong Xiangdong, Fu Yuegang, Xia Liangping, et al. Analysis of Ag nanoparticle resist in fabrication of transmission-enhanced subwavelength structures[J]. Nanophotonics, 2016, 10(4):046017.
[7] Dong Xiaoxuan, Shen Su, Chen Linsen. Fabrication of moth-eye antireflection nanostructure through a silver mirror reaction[J]. Acta Photonica Sinica, 2014, 43(7):0722001. (in Chinese)董晓轩,申溯,陈林森. 银镜反应制备纳米蛾眼减反结构法[J]. 光子学报, 2014, 43(7):0722001.
[8] Dong Tingting. Research on the optical mechanism of bionic moth-eye antireflection micro-nano structure[D]. Changchun:Changchun University of Science and Technology, 2016:61. (in Chinese)董亭亭. 仿生蛾眼抗反射微纳结构光学机理研究[D]. 长春:长春理工大学, 2016:61.
[9]

Takeharu Okuno. Development of a subwavelength structure coating (SWC) and its application to imaging lenses[C]//SPIE, 2010, 7652:765203.
[10]

Tadanaga K, Katata N, Minami T. Super-water-repellent Al2O3 coating films with high transparency[J]. J Am Ceram Soc, 1997, 80(4):1040-1042.