[1] Zhang Chunmei, Liu Xiaoqing. Research of bias temperature error compensation method in fiber optic gyroscopes [J]. Flight Control & Detection, 2020, 3(2): 70-74. (in Chinese)
[2] 季阳. 光源设计及其对光纤陀螺性能影响的研究[D]. 哈尔滨工程大学. 2017.

Ji Yang. Design of light source and research on its impact on fiber optic gyroscope [D]. Harbin: Harbin Engineering University, 2017. (in Chinese)
[3]

Wu Yanji, Huang Xianlin. Study on temperature stability of scale-factor in closed-loop fiber optical gyroscope [J]. Transactions of Beijing Institute of Technology, 2007, 27(7): 618-620. (in Chinese) doi:  10.3969/j.issn.1001-0645.2007.07.013
[4]

Zatta P Z, Hall D C. Ultra-high-stability two-stage superfluorescent fibre sources for fibre optic gyroscopes [J]. Electron Lett, 2002, 38: 406-408. doi:  10.1049/el:20020278
[5] 李凯, 辛璟焘, 何巍, 等. 基于宽谱信号光注入的超荧光光纤光源[J]. 工具技术, 2018, 52(7): 5. doi:  10.3969/j.issn.1000-7008.2018.07.047
[6]

Wu Xu, Ruan Shuangchen, Liu Chengxiang. High-stability erbium-doped photonic crystal fiber source [J]. Appl Opt, 2012, 51(13): 2277-2281.
[7]

Xin Jingtao, Zhang Haitao, Hao He, et al. Experiment study of high mean wavelength and output power stability erbium-doped photonic crystal fiber superfluorescent source [J]. Chinese Journal of Lasers, 2015, 42(4): 0405002. (in Chinese)
[8]

Patrick H J, Kersey A D, Burns W K, et al. Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilisation [J]. Electron Lett, 1997, 33(24): 2061-2063. doi:  10.1049/el:19971376
[9]

Wang A, Ou P, Feng L S, et al. High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber [J]. IEEE Photon Technol Lett, 2009, 21: 1843-1845. doi:  10.1109/LPT.2009.2034621
[10]

Ou P, Cao B, Zhang C X, et al. Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fibre grating [J]. Electron Lett, 2008, 44(3): 187-189. doi:  10.1049/el:20082948
[11]

Wang Aimin. High stability Er-doped superfluorescent fiber source improved by incorporating bandpass filter [J]. IEEE Photon Technol Lett, 2011, 23(4): 227-229.
[12]

Yi Benshun, Hu Ruimin, Zhu Zibi, et al. Temperature compensation techniques for fibre Bragg gratings tuned by magnetostrictive transducers [J]. Chinese Journal of Lasers, 2002, 29(12): 1085-1088. (in Chinese) doi:  10.3321/j.issn:0258-7025.2002.12.008
[13]

Yoffe G W, Krug P A, Ouellette F, et al. Passive temperature-compensating package for optical fiber gratings [J]. Applied Optics, 1995, 34(30): 6859-6861.
[14]

Arya V, Sherrer D W, Wang A, et al. Application of thin-film optical filters to the temperature compensation of optical fiber grating-based devices [J]. IEEE Transactions on Instrumentation and Measurement, 1997, 46(5): 1173-1177. doi:  10.1109/19.676734
[15]

Yu Gang, He Sailing. A new package technique for fiber gratings [J]. Acta Photonica Sinica, 2004, 33(3): 291-293. (in Chinese)
[16]

Cao Bin, Ou Pan, Jia Ming, et al. An innovative temperature-compensate package for fiber Bragg grating [J]. Chinese Journal of Lasers, 2008, 35(12): 1959-1961. (in Chinese) doi:  10.3321/j.issn:0258-7025.2008.12.020
[17]

Liu Yonghong, Huang Dexiu, Ruan Yinglan, et al. A temperature insensitive fiber grating [J]. Chinese Journal of Lasers, 1997, 24(10): 895-898. (in Chinese) doi:  10.3321/j.issn:0258-7025.1997.10.008
[18] 吴昊, 张洋, 王帅, 等. 超短FBG的高灵敏度温度传感器[J]. 激光与红外, 2021.

Wu Hao, Zhang Yang, Wang Shuai, et al. High sensitivity temperature sensor of ultra-short FBG [J]. Laser & Infrared, 2021, 51(8): 1057-1064. (in Chinese)
[19]

Li Jiang, Xin Jingtao, Wu Hao, et al. Research on the inscription and apodization method of ultra short fiber Bragg grating [J]. Laser & Infrared, 2021, 51(3): 316-320. (in Chinese) doi:  10.3969/j.issn.1001-5078.2021.03.010