[1] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5):S573-S580.
[2] Bon P, Maucort G, Wattellier B, et al. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells[J]. Optics Express, 2009, 17(15):13080-13094.
[3] Wei Q, Li Y, Vargas J, et al. Principal component analysis-based quantitative differential interference contrast microscopy[J]. Optics Letters, 2019, 44(1):45-48.
[4] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5):291-293.
[5] Waheb B, Ting-Wei S, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
[6] Kyoohyun K, Hyeok Y, Monica D S, et al. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography[J]. Journal of Biomedical Optics, 2014, 19(1):011005-011018.
[7] Marquet P, Depeursinge C, Magistretti P J. Review of quantitative phase-digital holographic microscopy:promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders[J]. Neurophotonics, 2014, 1(2):020901-020915.
[8] Mitchison J M. Single cell studies of the cell cycle and some models[J]. Theoretical Biology Medical Modelling, 2005, 2(1):4-9.
[9] Bedrossian M, Lindensmith C, Nadeau J L. Digital holographic microscopy, a method for detection of microorganisms in plume samples from enceladus and other icy worlds[J]. Astrobiology, 2017, 17(9):913-925.
[10] Hsu W C, Su J W, Chang C C, et al. Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions[C]//SPIE, 2012, 8553:855310.
[11] Lee S Y, Park H J, Kim K, et al. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus[J]. Scientific Reports, 2017, 7:1039.
[12] Haifler M, Girshovitz P, Dardikman G, et al. Interferometric phase microscopy for label-free morphological evaluation of sperm cells[J]. Fertility and Seterility, 2015, 104(1):43-47.
[13] Shaked N T, Satterwhite L L, Telen M J, et al. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry[J]. Journal of Biomedical Optics, 2011, 16(3):030506.
[14] Mico V, Zalevsky Z, Garca J. Common-path phase-shifting digital holographic microscopy:A way to quantitative phase imaging and superresolution[J]. Optics Communications, 2008, 281(17):4273-4281.
[15] Jiang H Z, Zhao J L, Di J L, et al. Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography[J]. Optics Express, 2009, 17(21):18836-18842.
[16] Schwarz C J, Kuznetsova Y, Brueck S R J. Imaging interferometric microscopy[J]. Optics Letters, 2003, 28(16):1424-1426.
[17] Yuan C, Situ G, Pedrini G, et al. Resolution improvement in digital holography by angular and polarization multiplexing[J]. Applied Optics, 2011, 50(7):B6-B11.
[18] Mico V, Zalevsky Z, Garcia-Martinez P, et al. Single-step superresolution by interferometric imaging[J]. Optics Express, 2004, 12(12):2589-2596.
[19] Hillman T R, Gutzler T, Alexandrov S A, et al. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy[J]. Optics Express, 2009, 17(10):7873-7892.
[20] Mic V, Zalevsky Z, Ferreira C, et al. Superresolution digital holographic microscopy for three-dimensional samples[J]. Optics Express, 2008, 16(23):19260-19270.
[21] Chowdhury S, Izatt J. Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging[J]. Biomedical Optics Express, 2013, 4(10):1795-1805.
[22] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 2013, 38(8):1328-1330.
[23] Gao P, Yao B L, Min J W, et al. Autofocusing of digital holographic microscopy based on off-axis illuminations[J]. Optics Letters, 2012, 37(17):3630-3632.
[24] Goodman J. Speckle Phenomena in Optics:Theory and Applications[M]. American:Roberts Company, 2006.
[25] Tiziani H J, Pedrini G. From speckle pattern photography to digital holographic interferometry[Invited] [J]. Applied Optics, 2013, 52(1):30-44.
[26] Garca J, Zalevsky Z, Fixler D. Synthetic aperture superresolution by speckle pattern projection[J]. Optics Express, 2005, 13(16):6073-6078.
[27] Park Y, Choi W, Yaqoob Z, et al. Speckle-field digital holographic microscopy[J]. Optics Express, 2009, 17(15):12285-12292.
[28] Zheng J J, Gao P, Yao B L, et al. Digital holographic microscopy with phase-shift-free structured illumination[J]. Photonics Research, 2014, 2(3):87-91.
[29] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography:Principle, implementation and characterization[J]. Optics Express, 2015, 23(3):3472-3491.
[30] Faulkner H M L, Rodenburg J. Movable aperture lensless transmission microscopy:A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2):023903.
[31] Hoppe W. Beugung im inhomogenen Primrstrahlwellenfeld. I. Prinzip einer phasenmessung von elektronenbeungung-sinterferenzen[J]. Acta Crystallographica, 1969, 25(4):495-501.
[32] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22):4845-4848.
[33] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7:739-745.
[34] Tian L, Liu Z, Yeh L-H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2(10):904-911.
[35] He X, Liu C, Zhu J. Single-shot Fourier ptychography based on diffractive beam splitting[J]. Optics Letters, 2018, 43(2):214-217.
[36] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7):2376-2389.
[37] Sun J S, Zuo C, Zhang L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations[J]. Scientific Reports, 2017, 7:1187.
[38] Maiden A M, Humphry M J, Zhang F, et al. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4):604-612.
[39] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494:68.
[40] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1):27-29.
[41] Liu Cheng, Pan Xingchen. Coherent diffractive imaging based on the multiple beam illumination with cross grating[J]. Acta Physica Sinica, 2013, 62(18):184204.
[42] Fan Jiadong, Jiang Huaidong. Coherent X-ray diffraction imaging and its applications in materials science and biology[J]. Acta Physica Sinica, 2012, 61(21):218702.
[43] Gao P, Pedrini G, Zuo C, et al. Phase retrieval using spatially modulated illumination[J]. Optics Letters, 2014, 39(12):3615-3618.
[44] Zhang Jianlin, Sun Jiasong, Chen Qian, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7:11777. (in Chinese)
[45] Wu Y, Zhang Y, Luo W, et al. Demosaiced pixel super-resolution for multiplexed holographic color imaging[J]. Scientific Reports, 2016, 6:28601.
[46] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science Applications, 2015, 4:e261.
[47] Stockmar M, Cloetens P, Zanette I, et al. Near-field ptychography:phase retrieval for inline holography using a structured illumination[J]. Scientific Reports, 2013, 3:1927.
[48] Claus D, Rodenburg J M. Pixel size adjustment in coherent diffractive imaging within the Rayleigh-Sommerfeld regime[J]. Applied Optics, 2015, 54(8):1936-1944.
[49] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
[50] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
[51] Rivenson Y, Grcs Z, Gnaydin H, et al. Deep learning microscopy[J]. Optica, 2017, 4(11):1437-1443.
[52] Su T, Xue L, Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories 2012[J]. Nature Photonics, 2013, 7:739-745.