[1] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 2018, 12(10):578-589.
[2] Cotte Y, Toy F, Jourdain P, et al. Marker-free phase nanoscopy[J]. Nature Photonics, 2013, 7(113):113-117.
[3] Nguyen T H, Kandel M E, Rubessa M, et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens[J]. Nature Communications, 2017, 8(1):210.
[4] Bianco V, Paturzo M, Marchesano V, et al. Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector[J]. Lab on a Chip, 2015, 15(9):2117-2124.
[5] Yao Baoli, Lei Ming, Xue Bin, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology[J]. Acta Photonica Sinica, 2011, 40(11):1607-1618. (in Chinese)
[6] Maire G, Drsek F, Girard J, et al. Experimental demonstration of quantitative imaging beyond abbe's limit with optical diffraction tomography[J]. Physical Review Letters, 2009, 102(21):213905.
[7] Alexandrov S A, Hillman T R, Gutzler T, et al. Synthetic aperture Fourier holographic optical microscopy[J]. Physical Review Letters, 2006, 97(16):168102.
[8] Arhab S, Soriano G, Ruan Y, et al. Nanometric resolution with far-field optical profilometry[J]. Physical Review Letters, 2013, 111(5):053902.
[9] Calabuig A, Mic V, Garcia J, et al. Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing[J]. Opt Lett, 2011, 36(6):885-887.
[10] Yuan C, Situ G, Pedrini G, et al. Resolution improvement in digital holography by angular and polarization multiplexing[J]. Appl Opt, 2011, 50(7):B6-B11.
[11] Mico V, Zalevsky Z, Garca J. Synthetic aperture microscopy using off-axis illumination and polarization coding[J]. Optics Communications, 2007, 276(2):209-217.
[12] Picazo-Bueno J, Zalevsky Z, Garca J, et al. Superresolved spatially multiplexed interferometric microscopy[J]. Opt Lett, 2017, 42(5):927-930.
[13] Mico V, Zalevsky Z, Garca-Martnez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. J Opt Soc Am A, 2006, 23(12):3162-3170.
[14] Mico V, Zalevsky Z, Garca-Martnez P, et al. Superresolved imaging in digital holography by superposition of tilted wavefronts[J]. Appl Opt, 2006, 45(5):822-828.
[15] Thurman S T, Bratcher A. Multiplexed synthetic-aperture digital holography[J]. Appl Opt, 2015, 54(3):559-568.
[16] Price J R, Bingham P R, Thomas J C E. Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain[J]. Appl Opt, 2007, 46(6):827-833.
[17] Schwarz C J, Kuznetsova Y, Brueck S R J. Imaging interferometric microscopy[J]. Opt Lett, 2003, 28(16):1424-1426.
[18] Bhl J, Babovsky H, Kiessling A, et al. Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra[J]. Optics Communications, 2010, 283(19):3631-3638.
[19] Kim M, Choi Y, Fang-Yen C, et al. High-speed synthetic aperture microscopy for live cell imaging[J]. Opt Lett, 2011, 36(2):148-150.
[20] Mico V, Zalevsky Z, Garcia-Martinez P, et al. Single-step superresolution by interferometric imaging[J]. Opt Express, 2004, 12(12):2589-2596.
[21] Zhao J, Yan X, Sun W, et al. Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states[J]. Opt Lett, 2010, 35(20):3519-3521.
[22] Yuan C, Zhai H, Liu H. Angular multiplexing in pulsed digital holography for aperture synthesis[J]. Opt Lett, 2008, 33(20):2356-2358.
[23] Mic V, Zalevsky Z. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging[J]. Journal of Biomedical Optics, 2010, 15(4):046027.
[24] Granero L, Zalevsky Z, Mic V. Resolution and field of view improvement in digital holography using a VCSEL source array[C]//10th Euro-American Workshop on Information Optics, 2011:1-3.
[25] Granero L, Mic V, Zalevsky Z, et al. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information[J]. Appl Opt, 2010, 49(5):845-857.
[26] Lai X J, Tu H Y, Wu C H, et al. Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy[J]. Appl Opt, 2015, 54(1):A51-A58.
[27] Zheng J, Gao P, Yao B, et al. Digital holographic microscopy with phase-shift-free structured illumination[J]. Photon Res, 2014, 2(3):87-91.
[28] Snchez-Ortiga E, Martnez-Corral M, Saavedra G, et al. Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination[J]. Opt Lett, 2014, 39(7):2086-2089.
[29] Lai X J, Tu H Y, Lin Y C, et al. Coded aperture structured illumination digital holographic microscopy for superresolution imaging[J]. Opt Lett, 2018, 43(5):1143-1146.
[30] Kashter Y, Vijayakumar A, Miyamoto Y, et al. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination[J]. Opt Lett, 2016, 41(7):1558-1561.
[31] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Opt Lett, 2013, 38(8):1328-1330.
[32] Neumann A, Kuznetsova Y, Brueck S R J. Structured illumination for the extension of imaging interferometric microscopy[J]. Opt Express, 2008, 16(10):6785-6793.
[33] Chowdhury S, Izatt J. Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging[J]. Opt Lett, 2014, 39(4):1015-1018.
[34] Lee K, Kim K, Kim G, et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography[J]. Opt Lett, 2017, 42(5):999-1002.
[35] Chowdhury S, Eldridge W J, Wax A, et al. Refractive index tomography with structured illumination[J]. Optica, 2017, 4(5):537-545.
[36] Wilde J P, Goodman J W, Eldar Y C, et al. Coherent superresolution imaging via grating-based illumination[J]. Appl Opt, 2017, 56(1):A79-A88.
[37] Park Y, Choi W, Yaqoob Z, et al. Speckle-field digital holographic microscopy[J]. Opt Express, 2009, 17(15):12285-12292.
[38] Zheng J, Pedrini G, Gao P, et al. Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination[J]. Journal of Optics, 2015, 17(8):085301.
[39] Liu C, Liu Z, Bo F, et al. Super-resolution digital holographic imaging method[J]. Applied Physics Letters, 2002, 81(17):3143-3145.
[40] Paturzo M, Merola F, Grilli S, et al. Super-resolution in digital holography by a two-dimensional dynamic phase grating[J]. Opt Express, 2008, 16(21):17107-17118.
[41] Lin Q, Wang D, Wang Y, et al. Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator[J]. Optics and Lasers in Engineering, 2015, 66:279-284.
[42] Zhang W, Cao L, Jin G, et al. Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation[J]. Appl Opt, 2018, 57(1):A164-A171.
[43] Lin Q. Resolution improvement mechanism and experiment study on digital holographic microscopic imaging[D]:Beijing:Beijing University of Techology, 2017. (in Chinese)
[44] Zalevsky Z, Gur E, Garcia J, et al. Superresolved and field-of-view extended digital holography with particle encoding[J]. Opt Lett, 2012, 37(13):2766-2768.
[45] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
[46] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Opt Express, 2010, 18(11):11181-11191.
[47] Bishara W, Sikora U, Mudanyali O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J]. Lab on a Chip, 2011, 11(7):1276-1279.
[48] Claus D, Fritzsche M, Iliescu D, et al. High-resolution digital holography utilized by the subpixel sampling method[J]. Appl Opt, 2011, 50(24):4711-4719.
[49] Wu K, Wu X, Zhao L. Experimental research on super-resolution digital holography[J]. Optical Technique, 2018, 44(1):101-105. (in Chinese)
[50] Li Y, Lilley F, Burton D, et al. Evaluation and benchmarking of a pixel-shifting camera for superresolution lensless digital holography[J]. Appl Opt, 2010, 49(9):1643-1650.
[51] Mic V, Granero L, Zalevsky Z, et al. Superresolved phase-shifting Gabor holography by CCD shift[J]. Journal of Optics A:Pure and Applied Optics, 2009, 11(12):125408.
[52] Zhang Y, Lu X, Luo Y, et al. Synthetic aperture holography by movement of object[C]//SPIE, 2005, 5636:8.
[53] Jiang H, Zhao J, Di J, et al. Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography[J]. Opt Express, 2009, 17(21):18836-18842.
[54] Massig J H. Digital off-axis holography with a synthetic aperture[J]. Opt Lett, 2002, 27(24):2179-2181.
[55] Gymesi F, Fzessy Z, Borbly V, et al. Half-magnitude extensions of resolution and field of view in digital holography by scanning and magnification[J]. Appl Opt, 2009, 48(31):6026-6034.
[56] Huang H, Rong L, Wang D, et al. Synthetic aperture in terahertz in-line digital holography for resolution enhancement[J]. Appl Opt, 2016, 55(3):A43-A48.
[57] Lohmann A W, Dorsch R G, Mendlovic D, et al. Space-bandwidth product of optical signals and systems[J]. J Opt Soc Am A, 1996, 13(3):470-473.
[58] Fellgett Peter B, Linfoot E H, Redman Roderick O. On the assessment of optical images[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1955, 247(931):369-407.
[59] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. J Opt Soc Am, 1966, 56(11):1463-1471.
[60] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. New York:Roberts and Company Publishers, 2005.
[61] Cox I J, Sheppard C J R. Information capacity and resolution in an optical system[J]. J Opt Soc Am A, 1986, 3(8):1152-1158.
[62] Bastiaans M J. Wigner distribution function and its application to first-order optics[J]. J Opt Soc Am, 1979, 69(12):1710-1716.
[63] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Opt Lett, 1997, 22(16):1268-1270.
[64] Fienup J R. Phase retrieval algorithms:a comparison[J]. Appl Opt, 1982, 21(15):2758-2769.
[65] Zhang W, Cao L, Brady D J, et al. Twin-image-free holography:a compressive sensing approach[J]. Physical Review Letters, 2018, 121(9):093902.
[66] Zhang H, Cao L, Zhang H, et al. Efficient block-wise algorithm for compressive holography[J]. Opt Express, 2017, 25(21):24991-25003.
[67] Girshovitz P, Shaked N T. Doubling the field of view in off-axis low-coherence interferometric imaging[J]. Light:Science Amp; Applications, 2014, 3:e151.
[68] Rubin M, Dardikman G, Mirsky S K, et al. Six-pack off-axis holography[J]. Opt Lett, 2017, 42(22):4611-4614.
[69] Mic V, Zheng J, Garcia J, et al. Resolution enhancement in quantitative phase microscopy[J]. Adv Opt Photon, 2019, 11(1):135-214.
[70] Li H, Zhong L, Ma Z, et al. Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography[J]. Optics Communications, 2011, 284(9):2268-2272.
[71] Tippie A E, Kumar A, Fienup J R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction[J]. Opt Express, 2011, 19(13):12027-12038.
[72] Lim S, Choi K, Hahn J, et al. Image-based registration for synthetic aperture holography[J]. Opt Express, 2011, 19(12):11716-11731.
[73] Song S, Wan Y, Han Y, et al. Structure-illuminated self-interference digital holography for optical sectioning[J]. Chinese Journal of Lasers, 2015, 46(5):1-12. (in Chinese)
[74] Gustafsson M G L. Nonlinear structured-illumination microscopy:Wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13081-13086.
[75] Wicker K, Heintzmann R. Resolving a misconception about structured illumination[J]. Nature Photonics, 2014, 8(5):342.
[76] Jiang Z, Veetil S P, Cheng J, et al. High-resolution digital holography with the aid of coherent diffraction imaging[J]. Opt Express, 2015, 23(16):20916-20925.
[77] Zhao Y, Cao X, Chen B, et al. Digital holography subpixel displacement aperture synthesis[J]. Infrared and Laser Engineering, 2018, 47(6):0626002. (in Chinese)
[78] Zheng G, Lee S A, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22):3125-3129.
[79] Wu Y, Zhang Y, Luo W, et al. Demosaiced pixel super-resolution for multiplexed holographic color imaging[J]. Scientific Reports, 2016, 6:28601.
[80] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning[J]. Light:Science Applications, 2016, 5:e16060.
[81] Paturzo M, Ferraro P. Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography[J]. Opt Lett, 2009, 34(23):3650-3652.
[82] Lu Y, Liu Y, Li P, et al. Multiplexed off-axis holography using a transmission diffraction grating[J]. Opt Lett, 2016, 41(3):512-515.