[1] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645.
[2] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Applied Spectroscopy, 2011, 65(9):967-980.
[3] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.
[4] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7):686-698.
[5] Nomarski G M. Differential microinterferometer with polarized waves[J]. J Phys Radium Paris, 1955, 16:9S.
[6] Tsien R Y. The green fluorescent protein[J]. Annual Review of Biochemistry, 1998, 67(1):509-544.
[7] Betzig E. Single molecules, cells, and super-resolution optics (nobel lecture)[J]. Angewandte Chemie International Edition, 2015, 54(28):8034-8053.
[8] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10):793-796.
[9] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2):82-87.
[10] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging[J]. Science, 2003, 300(5616):82-86.
[11] Schneckenburger H, Weber P, Wagner M, et al. Light exposure and cell viability in fluorescence microscopy[J]. Journal of Microscopy, 2012, 245(3):311-318.
[12] Sun Jiasong, Zhang Yuzhen, Chen Qian, et al. Fourier ptychographic microscopy:theory, advances, and applications[J]. Acta Optica Sinica, 2016, 36(10):1011005. (in Chinese)
[13] Coskun A F, Ozcan A. Computational imaging, sensing and diagnostics for global health applications[J]. Current Opinion in Biotechnology, 2014, 25:8-16.
[14] Brady D J, Choi K, Marks D L, et al. Compressive holography[J]. Optics Express, 2009, 17(15):13040-13049.
[15] Xu W, Jericho M H, Meinertzhagen I A, et al. Digital in-line holography for biological applications[J]. Proceedings of the National Academy of Sciences, 2001, 98(20):11301-11305.
[16] Greenbaum A, Luo W, Su T-W, et al. Imaging without lenses:achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9):889-895.
[17] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5):5346-5362.
[18] Kou S S, Waller L, Barbastathis G, et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3):447-449.
[19] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8):9220-9244.
[20] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Scientific Reports, 2017, 7(1):7654.
[21] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy:a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2):023903.
[22] Rodenburg J M. Ptychography and related diffractive imaging methods. Advances in Imaging and Electron Physics[M]. Burlington:Elsevier, 2008:87-184.
[23] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9):739-745.
[24] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(4):1336-1350.
[25] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18):20724-20744.
[26] Wang L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 2009, 3(9):503-509.
[27] Li J, Chen Q, Sun J, et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations[J]. Biomedical Optics Express, 2018, 9(6):2526-2542.
[28] Javidi B, Ponce-Daz R, Hong S-H. Three-dimensional recognition of occluded objects by using computational integral imaging[J]. Optics Letters, 2006, 31(8):1106-1108.
[29] Choi W, Fang-Yen C, Badizadegan K, et al. Tomographic phase microscopy[J]. Nature Mmethods, 2007, 4(9):717.
[30] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21(15):2758-2769.
[31] Elser V. Phase retrieval by iterated projections[J]. JOSA A, 2003, 20(1):40-55.
[32] Gonsalves R A. Phase retrieval from modulus data[J]. JOSA, 1976, 66(9):961-964.
[33] Cands E, Eldar Y, Strohmer T, et al. Phase retrieval via matrix completion[J]. SIAM Review, 2015, 57(2):225-251.
[34] Meinel A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 1970, 9(11):2501-2504.
[35] Mico V, Zalevsky Z, Garca-Martnez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. JOSA A, 2006, 23(12):3162-3170.
[36] Pacheco S, Salahieh B, Milster T, et al. Transfer function analysis in epi-illumination Fourier ptychography[J]. Optics Letters, 2015, 40(22):5343-5346.
[37] Ma B, Zimmermann T, Rohde M, et al. Use of Autostitch for automatic stitching of microscope images[J]. Micron, 2007, 38(5):492-499.
[38] Cui X, Lee L M, Heng X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Sciences, 2008, 105(31):10670-10675.
[39] Su T, Seo S, Erlinger A, et al. Towards wireless health:lensless on-chip cytometry[J]. Optics and Photonics News, 2008, 19(12):24-24.
[40] Seo S, Su T-W, Tseng K D, et al. Lensfree holographic imaging for on-chip cytometry and diagnostics[J]. Lab on a Chip, 2009, 9(6):777-787.
[41] Isikman S, Seo S, Sencan I, et al. Lensfree cell holography on a chip:from holographic cell signatures to microscopic reconstruction[C]//2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009:404-405.
[42] Lee S A, Leitao R, Zheng G, et al. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis[J]. PLOS ONE, 2011, 6(10):e26127.
[43] Zheng G, Lee S A, Antebi Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J]. Proceedings of the National Academy of Sciences, 2011, 108(41):16889-16894.
[44] Pang S, Cui X, DeModena J, et al. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate[J]. Lab on a Chip, 2010, 10(4):411-414.
[45] Garcia-Sucerquia J, Xu W, Jericho S K, et al. Digital in-line holographic microscopy[J]. Applied Optics, 2006, 45(5):836-850.
[46] Garcia-Sucerquia J, Xu W, Jericho M H, et al. Immersion digital in-line holographic microscopy[J]. Optics Letters, 2006, 31(9):1211-1213.
[47] Kanka M, Riesenberg R, Kreuzer H J. Reconstruction of high-resolution holographic microscopic images[J]. Optics Letters, 2009, 34(8):1162-1164.
[48] Kanka M, Riesenberg R, Petruck P, et al. High resolution (NA=0.8) in lensless in-line holographic microscopy with glass sample carriers[J]. Optics Letters, 2011, 36(18):3651-3653.
[49] Mudanyali O, Tseng D, Oh C, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications[J]. Lab on a Chip, 2010, 10(11):1417-1428.
[50] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
[51] Hahn J, Lim S, Choi K, et al. Video-rate compressive holographic microscopic tomography[J]. Optics Express, 2011, 19(8):7289-7298.
[52] Luo W, Zhang Y, Grcs Z, et al. Propagation phasor approach for holographic image reconstruction[J]. Scientific Reports, 2016, 6:22738.
[53] Xiong Z, Melzer J E, Garan J, et al. Optimized sensing of sparse and small targets using lens-free holographic microscopy[J]. Optics Express, 2018, 26(20):25676.
[54] Agbana T E, Gong H, Amoah A S, et al. Aliasing, coherence, and resolution in a lensless holographic microscope[J]. Optics Letters, 2017, 42(12):2271-2274.
[55] Zhang W, Cao L, Jin G, et al. Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation[J]. Applied Optics, 2018, 57(1):A164.
[56] Allier C, Morel S, Vincent R, et al. Imaging of dense cell cultures by multiwavelength lens-free video microscopy:cell cultures by lens-free microscopy[J]. Cytometry Part A, 2017, 91(5):433-442.
[57] Serabyn E, Liewer K, Wallace J K. Resolution optimization of an off-axis lensless digital holographic microscope[J]. Applied Optics, 2018, 57(1):A172.
[58] Feng S, Wu J. Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source[J]. Optics Express, 2017, 25(20):24735.
[59] Feng S, Wang M, Wu J. Lensless in-line holographic microscope with Talbot grating illumination[J]. Optics Letters, 2016, 41(14):3157.
[60] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 2012, 20(3):3129-3143.
[61] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199(1):65-75.
[62] Zhang Y, Pedrini G, Osten W, et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm[J]. Optics Express, 2003, 11(24):3234-3241.
[63] Bishara W, Sikora U, Mudanyali O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J]. Lab on a Chip, 2011, 11(7):1276-1279.
[64] Greenbaum A, Feizi A, Akbari N, et al. Wide-field computational color imaging using pixel super-resolved on-chip microscopy[J]. Optics Express, 2013, 21(10):12469-12483.
[65] Greenbaum A, Sikora U, Ozcan A. Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging[J]. Lab on a Chip, 2012, 12(7):1242-1245.
[66] Zheng G, Ah Lee S, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22):3125-3129.
[67] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning[J]. Light:Science Applications, 2016, 5(4):e16060.
[68] Hussain A, Li Y, Liu D, et al. Lensless imaging through multiple phase patterns illumination[J]. Journal of Biomedical Optics, 2017, 22(11):110502.
[69] Hussain A, Li Y, Liu D, et al. On-chip microscopy using random phase mask scheme[J]. Scientific Reports, 2017, 7(1):14768.
[70] Feng S, Wang M, Wu J. Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction[J]. Optics Communications, 2017, 402:104-108.
[71] Zuo C, Chen Q, Sun J, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation:a review[J]. Chinese J Lasers, 2016, 43(6):0609002.
[72] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Optics Letters, 2012, 37(4):707-709.
[73] Cheng H, Zhang Q, Wei S, et al. Phase retrieval based on transport-of-intensity equation[J]. Acta Photonica Sinica, 2011, 40(10):1566-1570.
[74] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14):17172-17186.
[75] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 2015, 23(11):14314-14328.
[76] Zhang J, Sun J, Chen Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7(1):11777.
[77] Zhang J, Chen Q, Li J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics Letters, 2018, 43(15):3714-3717.
[78] Kesavan S V, Momey F, Cioni O, et al. High-throughput monitoring of major cell functions by means of lensfree video microscopy[J]. Scientific Reports, 2014, 4:5942.
[79] Goodman J W. Statistical Optics[M]. Hoboken:John Wiley Sons, 2015.
[80] Su T-W, Seo S, Erlinger A, et al. High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip[J]. Biotechnology and Bioengineering, 2009, 102(3):856-868.
[81] Ozcan A, Demirci U. Ultra wide-field lens-free monitoring of cells on-chip[J]. Lab on a Chip, 2008, 8(1):98-106.
[82] Zhang X, Khimji I, Atakan Gurkan U, et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting[J]. Lab on a Chip, 2011, 11(15):2535-2540.
[83] Moscelli N, van den Driesche S, Witarski W, et al. An imaging system for real-time monitoring of adherently grown cells[J]. Sensors and Actuators A:Physical, 2011, 172(1):175-180.
[84] Bok Kim S, Bae H, Min Cha J, et al. A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging[J]. Lab on a Chip, 2011, 11(10):1801-1807.
[85] Jin G, Yoo I-H, Pack S P, et al. Lens-free shadow image based high-throughput continuous cell monitoring technique[J]. Biosensors and Bioelectronics, 2012, 38(1):126-131.
[86] Dolega M E, Allier C, Kesavan S V, et al. Label-free analysis of prostate acini-like 3D structures by lensfree imaging[J]. Biosensors and Bioelectronics, 2013, 49:176-183.
[87] Kwak Y H, Lee J, Lee J, et al. A simple and low-cost biofilm quantification method using LED and CMOS image sensor[J]. Journal of Microbiological Methods, 2014, 107:150-156.
[88] Penwill L A, Batten G E, Castagnetti S, et al. Growth phenotype screening of Schizosaccharomyces pombe using a Lensless microscope[J]. Biosensors and Bioelectronics, 2014, 54:345-350.
[89] Pushkarsky I, Liu Y, Weaver W, et al. Automated single-cell motility analysis on a chip using lensfree microscopy[J]. Scientific Reports, 2014, 4:4717.
[90] Tsai H F, Tsai Y C, Yagur Kroll S, et al. Water pollutant monitoring by a whole cell array through lens-free detection on CCD[J]. Lab on a Chip, 2015, 15(6):1472-1480.
[91] Kesavan S V, Garcia F P N Y, Menneteau M, et al. Real-time label-free detection of dividing cells by means of lensfree video-microscopy[J]. Journal of Biomedical Optics, 2014, 19(3):036004.
[92] Lee L M, Cui X, Yang C. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts[J]. Biomedical Microdevices, 2009, 11(5):951.
[93] Coskun A F, Sencan I, Su T W, et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects[J]. Optics Express, 2010, 18(10):10510-10523.
[94] Coskun A F, Su T W, Ozcan A. Wide field-of-view lens-free fluorescent imaging on a chip[J]. Lab on a Chip, 2010, 10(7):824-827.
[95] Shanmugam A, Salthouse C D. Lensless fluorescence imaging with height calculation[J]. Journal of Biomedical Optics, 2014, 19(1):016002.
[96] Coskun A F, Sencan I, Su T W, et al. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip[J]. Analyst, 2011, 136(17):3512-3518.
[97] Coskun A F, Sencan I, Su T W, et al. Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view[J]. PLOS ONE, 2011, 6(1):e15955.
[98] Martinelli L, Choumane H, Ha K N, et al. Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays:Role of a high rejection of excitation light[J]. Applied Physics Letters, 2007, 91(8):083901.
[99] Lee S A, Ou X, Lee J E, et al. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor[J]. Optics Letters, 2013, 38(11):1817-1819.
[100] Ozcan A, McLeod E. Lensless imaging and sensing[J]. Annual Review of Biomedical Engineering, 2016, 18(1):77-102.
[101] Khademhosseinieh B, Sencan I, Biener G, et al. Lensfree on-chip imaging using nanostructured surfaces[J]. Applied Physics Letters, 2010, 96(17):171106.
[102] Khademhosseinieh B, Biener G, Sencan I, et al. Lensfree color imaging on a nanostructured chip using compressive decoding[J]. Applied Physics Letters, 2010, 97(21):211112.
[103] Han C, Pang S, Bower D V, et al. Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator[J]. Analytical Chemistry, 2013, 85(4):2356-2360.
[104] Richardson W H. Bayesian-based iterative method of image restoration[J]. JOSA, 1972, 62(1):55-59.
[105] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 1974, 79:745.
[106] Pech-Pacheco J L, Cristobal G, Chamorro-Martinez J, et al. Diatom autofocusing in brightfield microscopy:a comparative study[C]//Proceedings of 15th International Conference on Pattern Recognition, 2000, 3:314-31.
[107] Mudanyali O, Oztoprak C, Tseng D, et al. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy[J]. Lab on a Chip, 2010, 10(18):2419-2423.
[108] Denis L, Fournier C, Fournel T, et al. Numerical suppression of the twin image in in-line holography of a volume of micro-objects[J]. Measurement Science and Technology, 2008, 19(7):074004.
[109] Hardie R C, Barnard K J, Bognar J G, et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system[J]. Optical Engineering, 1998, 37(1):247-261.
[110] Park S C, Park M K, Kang M G. Super-resolution image reconstruction:a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3):21-36.
[111] Elad M, Hel-Or Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[J]. IEEE Transactions on Image Processing, 2001, 10(8):1187-1193.
[112] Mudanyali O, Bishara W, Ozcan A. Lensfree super-resolution holographic microscopy using wetting films on a chip[J]. Optics Express, 2011, 19(18):17378-17389.
[113] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science Applications, 2015, 4(3):e261.
[114] Goodman J W. Introduction to Fourier Optics[M]. Colorado:Roberts and Company Publishers, 2005.
[115] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1):27-29.
[116] Koren G, Polack F, Joyeux D. Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints[J]. JOSA A, 1993, 10(3):423-433.
[117] Mudanyali O, McLeod E, Luo W, et al. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses[J]. Nature Photonics, 2013, 7(3):247-254.
[118] Greenbaum A, Zhang Y, Feizi A, et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy[J]. Science Translational Medicine, 2014, 6(267):267ra175.
[119] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
[120] Wei Q, McLeod E, Qi H, et al. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography[J]. Scientific Reports, 2013, 3:1699.
[121] Min J, Yao B, Zhou M, et al. Phase retrieval without unwrapping by single-shot dual-wavelength digital holography[J]. Journal of Optics, 2014, 16(12):125409.
[122] Bao P, Situ G, Pedrini G, et al. Lensless phase microscopy using phase retrieval with multiple illumination wavelengths[J]. Applied Optics, 2012, 51(22):5486-5494.
[123] Meng H, Hussain F. In-line recording and off-axis viewing technique for holographic particle velocimetry[J]. Applied Optics, 1995, 34(11):1827-1840.
[124] Isikman S O, Bishara W, Ozcan A. Partially coherent lensfree tomographic microscopy[J]. Applied Optics, 2011, 50(34):H253-H264.
[125] Isikman S O, Bishara W, Mavandadi S, et al. Lens-free optical tomographic microscope with a large imaging volume on a chip[J]. Proceedings of the National Academy of Sciences, 2011, 108(18):7296-7301.
[126] Su T-W, Isikman S O, Bishara W, et al. Multi-angle lensless digital holography for depth resolved imaging on a chip[J]. Optics Express, 2010, 18(9):9690-9711.
[127] Berdeu A, Momey F, Laperrousaz B, et al. Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy[J]. Applied Optics, 2017, 56(13):3939.
[128] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1):269-271.
[129] Greenbaum A, Akbari N, Feizi A, et al. Field-portable pixel super-resolution colour microscope[J]. PLOS ONE, 2013, 8(9):e76475.
[130] Kim D S, Choi J H, Nam M H, et al. LED and CMOS image sensor based hemoglobin concentration measurement technique[J]. Sensors and Actuators B:Chemical, 2011, 157(1):103-109.
[131] Lee J, Kwak Y H, Paek S H, et al. CMOS image sensor-based ELISA detector using lens-free shadow imaging platform[J]. Sensors and Actuators B:Chemical, 2014, 196:511-517.
[132] Tanaka T, Saeki T, Sunaga Y, et al. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging[J]. Biosensors and Bioelectronics, 2010, 26(4):1460-1465.
[133] Grcs Z, Orz L, Kiss M, et al. In-line color digital holographic microscope for water quality measurements[C]//Laser Applications in Life Sciences. International Society for Optics and Photonics, 2010, 7376:737614.
[134] Jack K. Video Demystified:a Handbook for the Digital Engineer[M]. Burlington:Elsevier, 2011.
[135] Ren Z, Xu Z, Lam E Y. Autofocusing in digital holography using deep learning[C]//Three-Dimensional and Multidimensional Microscopy:Image Acquisition and Processing XXV. International Society for Optics and Photonics, 2018, 10499:104991V.
[136] Ren Z, Xu Z, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 2018, 5(4):337-344.
[137] Zhang G, Guan T, Shen Z, et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 2018, 26(15):19388-19405.
[138] Wang H, Lyu M, Situ G. eHoloNet:a learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 2018, 26(18):22603-22614.
[139] Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 2017, 25(13):15043-15057.
[140] Goy A, Arthur K, Li S, et al. Low photon count phase retrieval using deep learning[J]. Physical Review Letters, 2018, 121(24):243902.
[141] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7):803-813.
[142] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 2017, 7(1):17865.
[143] Rivenson Y, Grcs Z, Gnaydin H, et al. Deep learning microscopy[J]. Optica, 2017, 4(11):1437-1443.
[144] Wang H, Rivenson Y, Jin Y, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 2019, 16(1):103.
[145] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM:super-resolution single-molecule microscopy by deep learning[J]. Optica, 2018, 5(4):458-464.
[146] Ouyang W, Aristov A, Lelek M, et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 2018, 36(5):460-468.
[147] Rivenson Y, Zhang Y, Gnaydin H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light:Science Applications, 2018, 7(2):17141.
[148] Horisaki R, Fujii K, Tanida J. Single-shot and lensless complex-amplitude imaging with incoherent light based on machine learning[J]. Optical Review, 2018, 25(5):593-597.
[149] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9):1117.
[150] Ahn D, Lee J, Moon S, et al. Human-level blood cell counting on lens-free shadow images exploiting deep neural networks[J]. The Analyst, 2018, 143(22):5380-5387.
[151] Flaccavento G, Lempitsky V, Pope I, et al. Learning to count cells:applications to lens-free imaging of large fields[J]. Microscopic Image Analysis with Applications in Biology, 2011, 1:3.
[152] Feizi A, Zhang Y, Greenbaum A, et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning[J]. Lab on a Chip, 2016, 16(22):4350-4358.
[153] Huang X, Guo J, Wang X, et al. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing[J]. PLOS ONE, 2014, 9(8):e104539.
[154] Rempfler M, Kumar S, Stierle V, et al. Cell lineage tracing in lens-free microscopy videos[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017:3-11.
[155] Grcs Z, Tamamitsu M, Bianco V, et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples[J]. Light:Science Applications, 2018, 7(1):66.
[156] Huang X, Wang X, Yan M, et al. A robust recognition error recovery for micro-flow cytometer by machine-learning enhanced single-frame super-resolution processing[J]. Integration, the VLSI Journal, 2015, 51:208-218.
[157] Su T-W, Choi I, Feng J, et al. Sperm trajectories form chiral ribbons[J]. Scientific Reports, 2013, 3:1664.