[1] Cao J, Poumellec B, Brisset F A L, et al. Tunable angular-dependent second-harmonic generation in glass by controlling femtosecond laser polarization [J]. Journal of Optical Society of America, 2016, 33(4): 741. doi:  10.1364/JOSAB.33.000741
[2] Zhang M, Chu Y, Zhao J, et al. Efficient generation of third harmonics in Yb-doped femtosecond fiber laser via spatial and temporal walk-off compensation [J]. Chinese Optics Letters, 2021, 19(3): 03140.
[3] EL-Damak A R, Chang Jianhua, Sun Jian, et al. Dual-wavelength, linearly polarized all-fiber laser with high extinction ratio [J]. IEEE Photonics Journal, 2013, 5(4): 1501406.
[4] Deng S, Liu W, Shen H. Laser polarization imaging method based on frequency-shifted optical feedback [J]. Optics & Laser Technology, 2023, 161: 109099.
[5] Wang J, Tang K F, Li B X, et al. Nd: YAG linearly polarized laser based on polarization eigenmodes [J]. Chinese Optics Letters, 2023, 21(11): 111401. doi:  10.3788/COL202321.111401
[6] Liu Y, Zhang S, Cong Z, et al. Single-longitudinal-mode laser at 1123 nm based on a twisted-mode cavity [J]. Crystals, 2021, 11(1): 58. doi:  10.3390/cryst11010058
[7] Guo L, Yang Y, Xu H, et al. High power linearly polarized diode-side-pumped Nd: YAG laser based on an asymmetric flat–flat resonator with the variable working point [J]. Optics Communications, 2022, 520: 128453. doi:  10.1016/j.optcom.2022.128453
[8] Zhang S, Tan Y, Zhang S. Effect of gain and loss anisotropy on polarization dynamics in Nd: YAG microchip lasers [J]. Jounal of Optics, 2015, 17(4): 045703.
[9] Akagla H, Chapron N, Loas G, et al. Control of the bipolarization emission of an Yb: YAG laser by the orientation of the pump polarization [J]. Optics Letters, 2023, 48(3): 700. doi:  10.1364/OL.475453
[10] Dong J, Shirakawa A, Ueda K. A crystalline-orientation self-selected linearly polarized Yb: Y3Al5O12 microchip laser [J]. Applied Physics Letters, 2008, 93(10): 101105. doi:  10.1063/1.2980423
[11] Dong J, Ma J, Ren Y Y. Polarization manipulated solid-state lasers with crystalline-orientations [J]. Laser Physics, 2011, 21(12): 2053-2058. doi:  10.1134/S1054660X11210043
[12] Li Y Y, Chen W D, Lin H F, et al. Manipulation of linearly polarized states in a diode-pumped YAG/Tm: YAG/YAG bulk laser [J]. Optics Letters, 2014, 39(7): 1945. doi:  10.1364/OL.39.001945
[13] Tang K F, Liao W B, Li K, et al. Coherent combination of two intracavity eigenmodes producing linearly polarized emission in an isotropic laser [J]. Optics Express, 2020, 28(23): 34337. doi:  10.1364/OE.405813
[14] Huang Y C, Li B X, Zhang G, et al. Linear polarization emission of Yb: YAG laser via polarization mode frequency locking [J]. Infrared Physics & Technology, 2023, 128: 104516.
[15] Laporta P, Taccheo S, Longhi S, et al. Erbium–ytterbium microlasers: Optical properties and lasing characteristics [J]. Optical Materials, 1999, 11(2-3): 269-288. doi:  10.1016/S0925-3467(98)00049-4
[16] Sui J N, Wang Y L, Zhang Y, et al. Thermal effect analysis of LD end-pumped Er:Yb:glass/Co:MALO crysta [J]. Infrared and Laser Engineering, 2023, 52(8): 20230349. (in Chinese)
[17] Chen Y J, Lin Y F, Huang Y D, et al. Enhanced performance of acousto-optic Q-switched Er: Yb: RAl3(BO3)4 (R = Y and Lu) pulse lasers at 1580 nm [J]. Laser Physics, 2013, 23(9): 095801. doi:  10.1088/1054-660X/23/9/095801
[18] Młyńczak J, Kopczyński K, Mierczyk Z, M, et al. Comparison of cw laser generation in Er3+, Yb3+: glass microchip lasers with different types of glasses [J]. Opto-Electronics Review, 2011, 19(4): 3963-3968.
[19] Guo N, Hui Y L, Cai J L, et al. LD pumped kHz Er3+, Yb3+: Glass passively Q-switched microchip lasers [J]. Infrared and Laser Engineering, 2018, 47(10): 1005002. (in Chinese)
[20] Cheng Y, Zhang H, Zhang K, et al. Growth and spectroscopic characteristics of Er3+: YbVO4 crystal [J]. Journal of Crystal Growth, 2009, 311(15): 3963-3968. doi:  10.1016/j.jcrysgro.2009.06.033
[21] Chen H Y, Dai J Z, Yang Y P, et al. Laser diode end-pumped Er-Yb co-doped phosphate glass waveguide amplifiers [J]. Chinese Journal of Lasers, 2004, 31(S1): 227. (in Chinese) doi:  10.3321/j.issn:0258-7025.2004.z1.078
[22] Karlsson G, Laurell F, Tellefsen J, et al. Development and characterization of Yb-Er laser glass for high average power laser diode pumping [J]. Applied Physics B, 2002, 75(1): 41-46. doi:  10.1007/s00340-002-0950-4
[23] Cheng W W, Zhang T S, Jiang Z Q, et al. 4.55 W continue-wave dual-end pumping of Er: Yb: YAl3(BO3)4 microchip laser at 1.5 μm [J]. Applied Physics Letters, 2023, 123(17): 171101. doi:  10.1063/5.0167529
[24] Chen Y J, Lin Y F, Huang Y D, et al. Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er: Yb: YAl3(BO3)4/sapphire composite crystal around 1.55 μm [J]. Optics Express, 2018, 26(1): 419. doi:  10.1364/OE.26.000419
[25] Chen Y J, Lin Y F, Huang Y D, et al. Diode-pumped 1.5-1.6 μm laser operation in Er3+ doped YbAl3(BO3)4 microchip [J]. Optics Express, 2014, 22(11): 13969. doi:  10.1364/OE.22.013969
[26] Chen Y J, Lin Y F, Huang J H, et al. Research progress in 1550 nm all solid state lasers based on Er3+ - doped crystals [J]. Chinese Journal of Lasers, 2020, 47(5): 0500018. (in Chinese)
[27] Vallet M, Brunel M, Ropars G, et al. Theoretical and experimental study of eigenstate locking in polarization self-modulated lasers [J]. Physical Review A, 1997, 56(6): 5121-5130.
[28] She K, Huang Y C, Li B X, et al. Rapid measurement method of intracavity phase retardation based on laser frequency splitting [J]. Optics Express, 2023, 31(21): 35032. doi:  10.1364/OE.502490