[1] Smcalora M, Dowling J P, Bowden CM, et al. Optical limiting and switching of ultrashort pulses in nonlinear photonic band-gap materials[J]. Physical Review Letters, 1994, 73(10):1368-1371.
[2] Dini D, Calvete M J F, Hanack M. Nonlinear optical materials for the smart filtering of optical radiation[J]. Chemical Reviews, 2016, 116(22):13043-13233.
[3] Tutt L W, Boggess T F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials[J]. Progress in Quantum Electronics, 1993, 17(4):299-338.
[4] Zhou G J, Wong W Y. Organometallic acetylides of PtII, Au-I and Hg-II as new generation optical power limiting materials[J]. Chemical Society Reviews, 2011, 40(5):2541-2566.
[5] Zhang B, Li Y, Liu R, et al. Extending the bandwidth of reverse saturable absorption in platinum complexes using two-photon-initiated excited-state absorption[J]. ACS Applied Materials Interfaces, 2013, 5(3):565-572.
[6] Ehrlich J E, Wu X L, Lee I Y, et al. Two-photon absorption and broadband optical limiting with bis-donor stilbenes[J]. Optics Letters, 1997, 22(24):1843-1845.
[7] Pawlicki M, Collins H A, Denning R G, et al. Two-photon absorption and the design of two-photon dyes[J]. Angewandte Chemie International Edition, 2009, 48(18):3244-3266.
[8] Wang J, Hernandez Y, Lotya M, et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 2009, 21(23):2430-2435.
[9] Chen P, Wu X, Sun X, et al. Electronic structure and optical limiting behavior of carbon nanotubes[J]. Physical Review Letters, 1999, 82(12):2548-2551.
[10] Birge R R, Pierce B M. Semiclassical time-dependent theory of two-photon spectroscopy. The effect of dephasing in the virtual level on the two-photon excitation spectrum of isotachysterol[J]. International Journal of Quantum Chemistry, 1986, 29(4):639-656.
[11] Li Q S, Liu C L, Liu Z G, et al. Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals[J]. Optics Express, 2005, 13(6):1833-1838.
[12] Lin T-C, He G S, Zheng Q, et al. Degenerate two-/three-photon absorption and optical power-limiting properties in femtosecond regime of a multi-branched chromophore[J]. Journal of Materials Chemistry, 2006, 16(25):2490-2498.
[13] Morel Y, Irimia A, Najechalski P, et al. Two-photon absorption and optical power limiting of bifluorene molecule[J]. The Journal of Chemical Physics, 2001, 114(12):5391-5396.
[14] Sutherland R L, Brant M C, Heinrichs J, et al. Excitedstate characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push-pull charge-transfer chromophores[J]. Journal of the Optical Society of America B-Optical Physics, 2005, 22(9):1939-1948.
[15] Wu X, Xiao J, Sun R, et al. Spindle-type conjugated compounds containing twistacene unit:synthesis and ultrafast broadband reverse saturable absorption[J]. Advanced Optical Materials, 2017, 5(2):1600712.
[16] Gu B, Sun Y, Ji W. Two-photon-induced excited-state nonlinearities[J]. Optics Express, 2008, 16(22):17745-17751.
[17] Tutt L W, Kost A. Optical limiting performance of C60 and C70 solutions[J]. Nature, 1992, 356(6366):225-226.
[18] Perry J W, Mansour K, Lee I Y S, et al. Organic optical limiter with a strong nonlinear absorptive response[J]. Science, 1996, 273(5281):1533-1536.
[19] Zhang C, Song Y L, Kuhn F E, et al. Ultrafast response and superior optical limiting effects of planar open heterothiometallic clusters[J]. Advanced materials, 2002, 14(11):818-822.
[20] He T, Lim Z B, Ma L, et al. Large two-photon absorption of terpyridine-based quadrupolar derivatives:towards their applications in optical limiting and biological imaging[J]. Chemistry-An Asian Journal, 2013, 8(3):564-571.
[21] Liaros N, Aloukos P, Kolokithas-Ntoukas A, et al. Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids[J]. The Journal of Physical Chemistry C, 2013, 117(13):6842-6850.