[1] 刘公强. 磁光学[M].上海: 上海科学技术出版社, 2001.
[2] 李晋闽. 高功率全固态激光器研究及应用[J]. 红外与激光工程, 2007, 36(S1): 269-271.

Li Jinming. Research and application of high-power all solid-state laser [J]. Infrared and Laser Engineering, 2007, 36(S1): 269-271. (in Chinese)
[3] 龙勇, 石自彬, 丁雨憧, 等. 大尺寸TGG晶体生长与性能研究[J]. 压电与声光, 2016, 38(3): 433-436.

Long Yong, Shi Zibing, Ding Yuchong, et al. Growth and characterization of large-size Terbium Gallium Garnet single crystal [J]. Piezoelectrics & Acoustooptics, 2016, 38(3): 433-436. (in Chinese)
[4] 徐时清, 杨中民, 戴世勋, 等. Tb3+掺杂Faraday磁光玻璃的研究进展[J]. 硅酸盐学报, 2003, 4: 376-381. doi:  10.3321/j.issn:0454-5648.2003.04.011

Xu Shiqing, Yang Zhongming, Dai Shixun, et al. Recent progress in research of Tb3+ -doped faraday magneto optical glasses [J]. Journal of the Chinese Ceramic Society, 2003, 4: 376-381. (in Chinese) doi:  10.3321/j.issn:0454-5648.2003.04.011
[5] 蒋亚丝, 周蓓明, 王标, 等. 高性能大口径顺磁旋光玻璃[J]. 光学学报, 2009, 29(11): 3157. doi:  10.3788/AOS20092911.3157

Jiang Yasi, Zhou Beiming, Wang Biao, et al. High performance large aperture paramagnetic faraday rotatory glass [J]. Acta Optica Sinica, 2009, 29(11): 3157. (in Chinese) doi:  10.3788/AOS20092911.3157
[6]

Yasuhara R, Tokita S, Kawanaka J, et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics [J]. Optics Express, 2007, 15(18): 11255-11261. doi:  10.1364/OE.15.011255
[7]

Yasuhara R, Furuse H. Thermally induced depolarization in TGG ceramics [J]. Optics Letters, 2013, 38(10): 1751. doi:  10.1364/OL.38.001751
[8]

Lin H, Zhou S, Teng H. Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications [J]. Optical Materials, 2011, 33(11): 1833-1836. doi:  10.1016/j.optmat.2011.06.017
[9]

Balabanov S S, Permin D A, Rostokina E Y, et al. Characterizations of REE: Tb2O3 magneto-optical ceramics [J]. Physica Status Solidi (b), 2019, 257(8): 1900474.
[10]

Starobor A, Yasyhara R, Snetkov I, et al. TSAG-based cryogenic Faraday isolator [J]. Optical Materials, 2015, 47: 112-117. doi:  10.1016/j.optmat.2015.07.013
[11] 陈冲. 铽铝石榴石(TAG)磁旋光透明陶瓷的制备及性能研究[D]. 北京: 中国科学院大学, 2015.

Chen Chong. Preparation and properties of terbium aluminum garnet (TAG) magneto-optical transparent ceramics[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[12]

Geho M, Sekijima T, Fujii T. Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine [J]. Journal of Crystal Growth, 2004, 267(1-2): 188-193. doi:  10.1016/j.jcrysgro.2004.03.068
[13]

Snetkov I L, Voitovich A V, Palashov O V, et al. Review of Faraday isolators for kilowatt average power lasers [J]. IEEE Journal of Quantum Electronics, 2014, 50(6): 434-443. doi:  10.1109/JQE.2014.2317231
[14]

Aung Y L, Ikesue A. Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material [J]. Journal of the American Ceramic Society, 2017, 100(9): 4081-4087. doi:  10.1111/jace.14961
[15]

Rubinstein C B, Uitert L G V, Grodkiewicz W H. Magneto-optical properties of rare earth (3) aluminum garnets [J]. Journal of Applied Physics, 1964, 35(10): 3069. doi:  10.1063/1.1713182
[16]

Chen C, Zhou S, Lin H, et al. Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R=Y, Ce) transparent ceramics [J]. Applied Physics Letters, 2012, 101(13): 131908. doi:  10.1063/1.4756789
[17]

Hao D, Shao X, Tang Y, et al. Effect of Si 4+ doping on the microstructure and magneto-optical properties of TAG transparent ceramics [J]. Optical Materials, 2018, 77: 253-257. doi:  10.1016/j.optmat.2018.01.049
[18]

Chen J, Lin H, Hao D, et al. Exaggerated grain growth caused by ZrO2-doping and its effect on the optical properties of Tb3Al5O12 ceramics [J]. Scripta Materialia, 2019, 162: 82-85. doi:  10.1016/j.scriptamat.2018.10.040
[19]

Chen Chong, Ni Yi, Zhou Shengming, et al. Preparation of (Tb0.8Y0.2)3Al5O12 transparent ceramic as novel magneto-optical isolator material [J]. Chinese Optics Letters, 2013, 11(2): 021601-021603. doi:  10.3788/COL201311.021601
[20]

Chen C, Yi X, Zhang S, et al. Vacuum sintering of Tb3Al5O12 transparent ceramics with combined TEOS+MgO sintering aids [J]. Ceramics International, 2015, 41(10): 12823-12827. doi:  10.1016/j.ceramint.2015.06.118
[21]

Zheleznov D, Starobor A, Palashov O, et al. High-power Faraday isolators based on TAG ceramics [J]. Optics Express, 2014, 22(3): 2578-2583. doi:  10.1364/OE.22.002578
[22] 王向永. 中红外宽调谐激光材料TM∶Ⅱ-Ⅵ的制备及其性能研究[D]. 北京: 中国科学院大学, 2016.

Wang Xiangyong. Study on the preparation and properties of transition metal doped Ⅱ-Ⅵ broadly tunable Mid-IR laser[D]. Beijing: University of Chinese Academy of Sciences, 2016.
[23]

Myoung N, Martyshkin D V, Fedorov V V, et al. Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer [J]. Journal of Luminescence, 2013, 133: 257-261. doi:  10.1016/j.jlumin.2011.10.004
[24]

Mirov S, Fedorov V, Moskalev I, et al. Progress in Cr2+ and Fe2+ doped mid-IR laser materials [J]. Laser & Photonics Reviews, 2010, 4(1): 21-41.
[25]

Hömmerich U, Wu X, Davis V R, et al. Demonstration of room-temperature laser action at 2.5 m from Cr2+: Cd0.85Mn0.15Te [J]. Optics Letters, 1997, 22(15): 1180-1182. doi:  10.1364/OL.22.001180
[26]

Boyd G D, Buehler E, Storz F G. Linear and nonlinear optical properties of ZnGeP2 and CdSe [J]. Applied Physics Letters, 1971, 18(7): 301. doi:  10.1063/1.1653673
[27]

Lu Y Q, Wan Z L, Wang Q, et al. Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications [J]. Applied Physics Letters, 2000, 77(23): 3719-3721. doi:  10.1063/1.1329325
[28]

Liao J H, Marking D M, Hsu K F, et al. alpha- and beta-A(2)Hg(3)M(2)S(8) (A=K, Rb; M=Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response [J]. Journal of the American Chemical Society, 2003, 125(31): 9484-9493. doi:  10.1021/ja034121l
[29]

Vandevender A P, Kwiat P G. High efficiency single photon detection via frequency up-conversion [J]. Journal of Modern Optics, 2004, 51(9-10): 1433-1445. doi:  10.1080/09500340408235283
[30]

Khazanov E A. Compensation of thermally induced polarisation distortions in Faraday isolators [J]. Quantum Electronics, 1999, 29(1): 59-64. doi:  10.1070/QE1999v029n01ABEH001412
[31]

Yasuhara R, Snetkov I. Faraday rotator based on TSAG crystal with<001> orientation [J]. Optics Express, 2016, 24(14): 15486. doi:  10.1364/OE.24.015486
[32]

Khazanov E. Faraday isolators for high average power laserssize [J]. Advances in Solid State Lasers Development and Applications, 2010, 3: 45-72.
[33]

Snetkov I L, Yasuhara R, Starobor A V, et al. Thermo-optical and magneto-optical characteristics of Terbium Scandium Aluminum Garnet Crystals [J]. IEEE Journal of Quantum Electronics, 2015, 51 (7): 1-7.
[34]

Jin W, Ding J, Guo L, et al. Growth and performance research of Tb3Ga5O12 magneto-optical crystal [J]. Journal of Crystal Growth, 2018, 484(7): 17-20.
[35]

Kuznetsov I, Mukhin I, Silin D, et al. Thermal conductivity measurements using phase-shifting interferometry [J]. Optical Materials Express, 2014, 4 (10): 2204. doi:  10.1364/OME.4.002204
[36]

Ikesue A, Aung Y L, Makikawa S, et al. Polycrystalline (Tb X Y1−X)2O3 Faraday rotator [J]. Optics Letters, 2017, 42(21): 4399-4401. doi:  10.1364/OL.42.004399
[37]

Slezak O, Yasuhara R, Lucianetti A, et al. Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics [J]. Optics Express, 2015, 23(10): 13641. doi:  10.1364/OE.23.013641
[38]

Yasuhara R, Snetkov I, Starobor A, et al. Terbium gallium garnet ceramic Faraday rotator for high-power laser application [J]. Optics Letters, 2014, 39(5): 1145. doi:  10.1364/OL.39.001145
[39]

Zheleznov D, Starobor A, Palashov O, et al. Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping [J]. Optics Letters, 2014, 39(7): 2183-2186. doi:  10.1364/OL.39.002183
[40]

Zheleznov D, Starobor A, Palashov O, et al. Study of the properties and prospects of Ce: TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average [J]. Optical Materials Express, 2014, 4(10): 2127. doi:  10.1364/OME.4.002127
[41]

Dou R Q, Zhang H T, Zhang A L, et al . Growth and properties of TSAG and TSLAG magneto-optical crystals with large size [J]. Optical Materials, 2019, 96: 109272.
[42]

Yasuhara R, Snetkov I, Starobor A, et al. Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power [J]. Applied Physics Letters, 2014, 105(24): 241104. doi:  10.1063/1.4904461
[43]

Sato H, Chani V I, Yoshikawa A, et al. Micro-pulling-down growth and characterization of Tb3-xTmxAl5O12 fiber crystals for Faraday rotator applications [J]. Journal of Crystal Growth, 2004, 264(1-3): 253-259. doi:  10.1016/j.jcrysgro.2003.12.029
[44]

Geho M, Sekijima T, Fujii T. Growth mechanism of incongruently melting terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by laser FZ method [J]. Journal of Crystal Growth, 2005, 275(1-2): e663-e667. doi:  10.1016/j.jcrysgro.2004.11.048
[45] 宋财根, 卢俊业, 付聪, 等. 导模提拉法生长铽铝石榴石(TAG)晶体及性质表征[C]//第15届全国晶体生长与材料学术会议, 2009.

Song Caigen, Lu Junye, Fu Cong, et al. Growth and characterization of terbium aluminum garnet (TAG) crystal by guided mode Czochralski method[C]//The 15th National Conference on crystal growth and materials, 2009.
[46]

Starobor A, Palashov O, Zhou S. Thermo-optical properties of terbium-aluminum garnet ceramics doped with silicon and titanium [J]. Optics Letters, 2016, 41(7): 1510-1513. doi:  10.1364/OL.41.001510
[47]

Yakovlev A I, Snetkov I L, Palashov O V, et al. Magneto-optical and thermo-optical properties of Ce, Pr, and Ho doped TAG ceramics [J]. IEEE Journal of Quantum Electronics, 2019, 55(5): 1-8.
[48]

Snetkov I L, Permin D A, Balabanov S S, et al. Wavelength dependence of Verdet constant of Tb3+: Y2O3 ceramics [J]. Applied Physics Letters, 2016, 108(16): 3.
[49]

Veber P, Velazquez M, Gadret G, et al. Flux growth at 1230 degrees of cubic Tb2O3 single crystals and characterization of their optical and magnetic properties [J]. Crystengcomm, 2015, 17(3): 492-497. doi:  10.1039/C4CE02006E
[50]

Snetkov I L, Palashov O V. Cryogenic temperature characteristics of Verdet constant of terbium sesquioxide ceramics [J]. Optical Materials, 2016, 62: 697-700. doi:  10.1016/j.optmat.2016.10.049
[51]

Hao D, Chen J, Ao G, et al. Fabrication and performance investigation of Thulium-doped TAG transparent ceramics with high magneto-optical properties [J]. Optical Materials, 2019, 94: 311-315. doi:  10.1016/j.optmat.2019.06.010
[52]

Liu Q, Li X, Dai J, et al. Fabrication and characterizations of (Tb1−xPrx)3Al5O12 magneto-optical ceramics for Faraday isolators [J]. Optical Materials, 2018, 84: 330-334. doi:  10.1016/j.optmat.2018.07.028
[53]

Dai J, Pan Y, Xie T, et al. A novel (Tb0.995Ho0.005)3Al5O12 magneto-optical ceramic with high transparency and Verdet constant [J]. Scripta Materialia, 2018, 150: 160-163. doi:  10.1016/j.scriptamat.2018.03.021
[54]

Furuse H, Yasuhara R, Hiraga K, et al. High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics [J]. Optical Materials Express, 2016, 6(1): 191-196. doi:  10.1364/OME.6.000191
[55]

Chen J, Tang Y, Chen C, et al. Roles of zirconia-doping in the sintering process of high quality Tb3Al5O12 magneto-optic ceramics [J]. Scripta Materialia, 2020, 176: 83-87. doi:  10.1016/j.scriptamat.2019.09.011
[56]

Glebov A L, Leisher P O, Stevens G, et al. Optical isolators for 2-micron fibre lasers [J]. Proc of SPIE, 2015, 9346: 93460O.
[57]

Gomi M, Satoh K, Furuyama H, et al. Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect [J]. IEEE Translation Journal on Magnetics in Japan, 1990, 13(4): 294-299.
[58]

Hilico L, Douillet A, Karr J P, et al. Note: A high transmission Faraday optical isolator in the 9.2 μm range [J]. Review of Scientific Instruments, 2011, 82(9): 096106. doi:  10.1063/1.3640004
[59]

Dennis J H. A 10.6-micron four-port circulator using free carrier rotation in InSb [J]. IEEE Journal of Quantum Electronics, 1967, 3(10): 416-416. doi:  10.1109/JQE.1967.1074372
[60]

Jacobs S D, Teegarden K J, Ahrenkiel R K. Faraday Rotation Optical Isolator for 10.6-microm Radiation [J]. Applied Optics, 1974.
[61]

Tomasetta L R, Bicknell W E, Bates D H. 100 W average power 10.6 μm isolator based on the interband Faraday effect in InSb [J]. Quantum Electronics IEEE Journal of, 1979, 15(5): 266-269. doi:  10.1109/JQE.1979.1070001
[62] 陈辰嘉, 马可军. Cd1-xMnxTe的巨大法拉第旋转效应[J]. 北京大学学报: 自然科学版, 1992, 28(1): 101-106.

Chen Chenjia, Ma Kejun. Giant Faraday rotation effect of Cd1−xMnxTe [J]. Acta Scientiarum Naturalium, Universitatis Pekinensis, 1992, 28(1): 101-106. (in Chinese)
[63] 刘普霖. 半导体磁光理论和红外磁光光谱研究进展[J]. 量子电子学报, 1997, 14(2): 97-110.

Liu Pulin. Progress in magneto-optical theory and infrared magneto-optical spectroscopy of Semiconductors [J]. Chinese Journal of Quantum Electronics, 1997, 14(2): 97-110. (in Chinese)
[64]

Carlisle C B, Cooper D E. An optical isolator for mid-infrared diode lasers [J]. Optics Communications, 1989, 74(3-4): 207-210. doi:  10.1016/0030-4018(89)90350-7
[65]

Mironov E A, Palashov O V, Karimov D N. EuF2-based crystals as media for high-power mid-infrared Faraday isolators [J]. Scripta Materialia, 2019, 162: 54-57. doi:  10.1016/j.scriptamat.2018.10.039