[1] Khan S A, Kjær K H, Bevis M, et al. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming [J]. Nature Climate Change, 2014, 4(4): 292-299. doi:  10.1038/nclimate2161
[2] Markus T, Neumann T, Martino A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation [J]. Remote Sensing of Environment, 2017, 190: 260-273. doi:  10.1016/j.rse.2016.12.029
[3] Fang Yong, Cao Bincai, Gao Li, et al. Development and application of lidar mapping satellite [J]. Infrared and Laser Engineering, 2020, 49(11): 20201044. (in Chinese) doi:  10.3788/IRLA20201044
[4] Zhu Xiaoxiao, Wang Cheng, Xi Xiaohuan, et al. Research progress of ICESat-2/ATLAS data processing and applications [J]. Infrared and Laser Engineering, 2020, 49(11): 20200259. (in Chinese) doi:  10.3788/IRLA20200259
[5] Brunt K M, Neumann T A, Smith B E. Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the antarctic ice sheet [J]. Geophysical Research Letters, 2019, 46(22): 13072-13078. doi:  10.1029/2019GL084886
[6] Brunt K M, Neumann T A, Walsh K M, et al. Determination of local slope on the Greenland ice sheet using a multibeam photon-counting lidar in preparation for the ICESat-2 Mission [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11(5): 935-939.
[7] Kwok R, Markus T, Kurtz N T, et al. Surface height and sea ice freeboard of the Arctic Ocean from ICESat-2: Characteristics and early results [J]. Journal of Geophysical Research: Oceans, 2019, 124(10): 6942-6959. doi:  10.1029/2019JC015486
[8] Dandabathula G, Verma M, Sitiraju S R. Evaluation of best-fit terrain elevation of ICESat-2 ATL08 using DGPS surveyed points [J]. Journal of Applied Geodesy, 2020, 14(3): 285-293. doi:  10.1515/jag-2020-0003
[9] Horvat C, Blanchard‐Wrigglesworth E, Petty A. Observing waves in sea ice with ICESat-2 [J]. Geophysical Research Letters, 2020, 47(10): e2020GL087629.
[10] Lu X, Hu Y, Yang Y, et al. Antarctic spring ice-edge blooms observed from space by ICESat-2 [J]. Remote Sensing of Environment, 2020, 245: 111827.
[11] Hamamatsu Photonics. Chapter 4 Characteristics of Photomultiplier Tubes in Photomultiplier Tubes Basics and Applications[M]. 3rd ed. Japan: Hamamatsu Publishing, 2006.
[12] Smith B, Fricker H A, Holschuh N, et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter [J]. Remote Sensing of Environment, 2019, 233(5): 111352.
[13] Kwok R, Cunningham G F, Hoffmann J, et al. Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission [J]. Remote Sensing of Environment, 2016, 183: 13-25. doi:  10.1016/j.rse.2016.05.011
[14] Neuenschwander A, Pitts K. The ATL08 land and vegetation product for the ICESat-2 Mission [J]. Remote Sensing of Environment, 2019, 221: 247-259. doi:  10.1016/j.rse.2018.11.005
[15] Hu Y, Vaughan M, Liu Z, et al. The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory [J]. Optics Express, 2007, 15(9): 5327-5332. doi:  10.1364/OE.15.005327
[16] Li J, Hu Y, Huang J, et al. A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal [J]. Atmospheric Chemistry and Physics, 2011, 11(6): 2903-2916. doi:  https://doi.org/10.5194/acp-11-2903-2011
[17] Lu X, Hu Y, Yang Y. Ocean subsurface study from ICESat-2 mission[C]//2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall). IEEE, 2019.
[18] Lu X, Hu Y, Trepte C, et al. Ocean subsurface studies with the CALIPSO spaceborne lidar [J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4305-4317. doi:  10.1002/2014JC009970