[1] Olivera A C, Minucci M A, Mybrabo L N, et al. Bow shock wave mitigation by laser-plasma energy addition in hypersonic flow [J]. Journal of Spacecraft and Rockets, 2008, 45(5): 921-927. doi:  10.2514/1.33933
[2] Tret'yakov P K, Garanin A F, Grachev G N, et al. Control of supersonic flow around bodies by means of high-power recurrent optical breakdowns [J]. Physics-Doklady, 1996, 41(11): 566-567.
[3] Sasoh A, Sekiya Y, Sakai T, et al. Drag reduction of blunt body in a supersonic flow with laser energy depositions[C]//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. AIAA 2009-1533, 2009.
[4] Azarova O A. Supersonic flow control using combined energy deposition [J]. Aerospace, 2015, 2(1): 118-134. doi:  10.3390/aerospace2010118
[5] Markhotok A A. Mechanism of vortex generation in a supersonic flow behind a gas-plasma interface[J/OL]. [2019-10-22]. http://arxiv.org/abs/1703.10727.
[6] 文明, 王殿恺, 王伟东. 关键参数对激光等离子体热核与激波相互作用过程的影响规律[J]. 红外与激光工程, 2019, 48(4): 0406001. doi:  0406001

Wen Ming, Wang Diankai, Wang Weidong. Influence of key parameters on the interaction of the laser induced plasma hot core and shock wave [J]. Infrared and Laser Engineering, 2019, 48(4): 0406001. (in Chinese) doi:  0406001
[7] 王伟东, 文明, 王殿恺, 等. 激光等离子体热核与激波相互作用的流动特性研究[J]. 红外与激光工程, 2019, 48(3): 0306001. doi:  0306001

Wang Weidong, Wen Ming, Wang Diankai, et al. Study on the flow characteristics of interaction of the laser induced plasma hot core and shock wave [J]. Infrared and Laser Engineering, 2019, 48(3): 0306001. (in Chinese) doi:  0306001
[8]

Desai S, Kulkarni V, Gadgil H, et al. Aerothermodynamic considerations for energy deposition based drag reduction technique [J]. Applied Thermal Engineering, 2017, 122: 451-460. doi:  10.1016/j.applthermaleng.2017.04.114
[9]

Dors I G. Laser spark ignition modeling[D]. Tennessee: University of Tennessee, 2000: 7-25.
[10] 卿泽旭, 洪延姬, 王殿恺, 等. 静止空气中单脉冲激光能量非对称沉积实验与数值模拟[J]. 推进技术, 2017, 38(7): 1661-1668.

Qing Zexu, Hong Yanji, Wang Diankai, et al. Experimental and numerical study of nanosecond pulsed laser energy asymetric deposition in quiescent air [J]. Journal of Propulsion Technology, 2017, 38(7): 1661-1668. (in Chinese)
[11]

Chen Y L, Lewis J, Parigger C. Spatial and temporal profiles of pulsed laser-induced air plasma emissions [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 67(2): 91-103. doi:  10.1016/S0022-4073(99)00196-X
[12] 陈克强. 激光诱导气体火花演化的数值模拟研究[D]. 西安: 西安交通大学, 2014: 9-23.

Chen Keqiang. Numerical studies of laser-induced gas spark evolution[D]. Xi'an: Xi'an Jiaotong University, 2014: 9-23. (in Chinese)
[13]

Murphy A. Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas [J]. Plasma Chemistry and Plasma Processing, 1995, 15(2): 279-307. doi:  10.1007/BF01459700
[14] 鄢昌渝. 激光等离子体相互作用机理与大气吸气式激光推进数值计算研究[D]. 长沙: 国防科学技术大学, 2008: 137-138.

Yan Changyu. Numerical investigation on laser plasma interaction mechanism and air-breathing laser propulsion[D]. Changsha: National University of Defense Technology, 2008: 137-138. (in Chinese)
[15]

Sasoh A, Sekiya Y, Sakai T, et al. Supersonic drag reduction with repetitive laser pulses through a blunt body [J]. AIAA Journal, 2010, 48(12): 2811-2817. doi:  10.2514/1.J050174