[1] 班雪峰, 赵懿昊, 王翠鸾, 等. 808 nm半导体分布反馈激光器的光栅设计与制作[J]. 红外与激光工程, 2019, 48(11): 1105003.

Ban Xuefeng, Zhao Yihao, Wang Cuiluan, et al. Design and preparation of grating for 808 nm semiconductor distributed feedback laser [J]. Infrared and Laser Engineering, 2019, 48(11): 1105003. (in Chinese)
[2] 兰红波, 刘明杨, 郭良乐, 等. 面向大面积微结构批量化制造的复合压印光刻[J]. 光学 精密工程, 2019, 27(7): 1516-1527. doi:  10.3788/OPE.20192707.1516

Lan Hongbo, Liu Mingyang, Guo Liangle, et al. Composite imprint lithography for mass producing large-area mocrodtructures [J]. Optics and Precision Engineering, 2019, 27(7): 1516-1527. (in Chinese) doi:  10.3788/OPE.20192707.1516
[3] 杨高元, 蔡茂琦, 李金昱, 等. 基于低能离子轰击的亚波长纳米结构制备[J]. 光学学报, 2020, 40(17): 1736001.

Yang Gaoyuan, Cai Maoqi, Li Jinyu, et al. Preparation of subwavelength nanostructures based on low-energy on bombardment [J]. Acta Optica Sinica, 2020, 40(17): 1736001. (in Chinese)
[4] 陈智利, 刘卫国. 不同离子束参数诱导单晶硅纳米微结构与光学性能[J]. 红外与激光工程, 2013, 42(9): 2490-2495. doi:  10.3969/j.issn.1007-2276.2013.09.035

Chen Zhili, Liu Weiguo. Surface topography and optical properties of monocrystalline silicon induced by low energy different ion beam parameters [J]. Infrared and Laser Engineering, 2013, 42(9): 2490-2495. (in Chinese) doi:  10.3969/j.issn.1007-2276.2013.09.035
[5] 胡跃强, 李鑫, 王旭东, 等. 光学超构表面的微纳加工技术研究进展[J]. 红外与激光工程, 2020, 49(9): 20201035.

Hu Yueqiang, Li Xin, Wang Xudong, et al. Progress of micro-nano fabrication technologies for optical metasurfaces [J]. Infrared and Laser Engineering, 2020, 49(9): 20201035. (in Chinese)
[6]

Huang Q, Jia Q, Feng J, et al. Realization of wafer-scale nanogratings with sub-50 nm period through vacancy epitaxy [J]. Nature Communications, 2019, 10(1): 2437.
[7] 陈智利, 刘卫国, 杨利红. 低能离子束诱导蓝宝石自组织纳纳米结构与光学性能研究[J]. 中国激光, 2015, 42(3): 0306003.

Chen Zhili, Liu Weiguo, Yang Lihong. Self-Organizing nano-structure and optical properties of sapphire induced by low energy ion beam [J]. Chinese Journal of Lasers, 2015, 42(3): 0306003. (in Chinese)
[8] 刘雨昭, 陈智利, 费芒芒, 等. 不同氪离子束参数下的蓝宝石辐照实验[J]. 激光与光电子学进展, 2019, 56(12): 121601.

Liu Yuzhao, Chen Zhili, Fei Mangmang, et al. Irradiation of sapphire under different Kr+ ion beam parameters [J]. Laser & Optoelectronics Progress, 2019, 56(12): 121601. (in Chinese)
[9] 费芒芒, 陈智利, 刘卫国, 等. 低能Kr+离子束诱导蓝宝石晶体实验研究[J]. 光子学报, 2019, 48(6): 143-148.

Fei Mangmang, Chen Zhili, Liu Weiguo, et al. Experimental research on sapphire crystal induced by low energy Kr+ ion beam [J]. Acta Optica Sinica, 2019, 48(6): 143-148. (in Chinese)
[10]

Chen D, Yang G, Li J, et al. Terrace morphology on fused silica surfaces by Ar+ ion bombardment with Mo co-deposition [J]. Applied Physics Letters, 2018, 113(3): 033102. doi:  10.1063/1.5039565
[11]

Dipak B, Manabendra M, Prasanta K. Presence of reactive impurities in Ar+ ion beam plays a key role for Si ripple formation [J]. Nuclear Inst. and Methods in Physics Research, 2019, 444: 54-61. doi:  10.1016/j.nimb.2019.02.010
[12]

Lloyd K S, Bolotin I L, Schmeling M,et al. Metal impurity-assisted formation of nanocone arrays on Si by low energy ion-beam irradiation [J]. Surface Science, 2016, 652(11): 334-343.
[13]

Koyiloth V S, Gupta A, Roth S V. Study of pattern transition in nanopatterned Si(100) produced by impurity-assisted low-energy ion-beam erosion [J]. Applied Physics, 2017, A123(4): 225.1-225.8.
[14] 陈德康. 包含杂质共沉积的斜入射低能氩离子束诱导石英自组织纳米结构[D]. 合肥: 中国科学技术大学, 2019.

Chen Dekang. Self-organized nanstructures on SiO2 surface induced by low-energy ion bombardment at oblique incidence with impurity co-deposition[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese)
[15]

Liu Ying, Hirsch D, Fechner R, et al. Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition[J]. Applied Physics, 2018, 124: 73.
[16]

Bradley R M, Harper J M. Theory of ripple topography induced by ion bombardment [J]. J Vac Sci Technol A Vac Surf Films, 1988, 6: 2390-2395. doi:  10.1116/1.575561
[17]

Harrison M P, Pearson D A, Bradley R M. Emergence and detailed structure of terraced surfaces produced by oblique-incidence ion sputtering [J]. Phys Rev E, 2017, 96: 032804. doi:  10.1103/PhysRevE.96.032804