[1] Nasiri N, Bo R, Hung T F, et al. Tunable band-selective UV-photodetectors by 3D self-assembly of heterogeneous nanoparticle networks [J]. Advanced Functional Materials, 2016, 26(40): 7359-7366. doi:  10.1002/adfm.201602195
[2] Chen H, Liu K, Hu L, et al. New concept ultraviolet photodetectors [J]. Materials Today, 2015, 18(9): 493-502.
[3] Jiang Haitao, Liu Shibin, He Peipei, et al. The laterial growth of ZnO nanowires network based on the micro-electrode [J]. Rare Metal Materials and Engineering, 2017, 46(11): 3213-3216.
[4] Peng L, Hu L, Fang X. Low-dimensional nanostructure ultravio-let photodetectors [J]. Advanced Materials, 2013, 25(37): 5321-5328. doi:  10.1002/adma.201301802
[5] Jiang H, Liu S, Yuan Q. Synergistic effect of hybrid nanodia-mond/ZnO nanowires for improved ultraviolet photore-sponse [J]. Infrared and Laser Engineering, 2019, 48(1): 0120004. doi:  10.3788/IRLA201948.0120004
[6] Li X, Gao C, Duan H, et al. High‐performance photoelectro-chemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure [J]. Small, 2013, 9(11): 2005-2011. doi:  10.1002/smll.201202408
[7] Xie Y, Wei L, Wei G, et al. A self-powered UV photodetector based on TiO2 nanorod arrays [J]. Nanoscale Research Letters, 2013, 8(1): 188. doi:  10.1186/1556-276X-8-188
[8] Fang X, Hu L, Huo K, et al. New ultraviolet photodetector based on individual Nb2O5 nanobelts [J]. Advanced Functional Ma-terials, 2011, 21(20): 3907-3915. doi:  10.1002/adfm.201100743
[9] Liu H, Zhang Z, Hu L, et al. New UV‐a photodetector based on individual potassium niobate nanowires with high perfor-mance [J]. Advanced Optical Materials, 2014, 2(8): 771-778. doi:  10.1002/adom.201400176
[10] Djurišić A B, Ng A M C, Chen X Y. ZnO nanostructures for optoelectronics: material properties and device applications [J]. Progress in Quantum Electronics, 2010, 34(4): 191-259. doi:  10.1016/j.pquantelec.2010.04.001
[11] Wang Z, Yu R, Wang X, et al. Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect [J]. Advanced Materials, 2016, 28(32): 6880-6886. doi:  10.1002/adma.201600884
[12] Dai W, Pan X, Chen S, et al. Honeycomb-like NiO/ZnO hetero-structured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance [J]. Journal of Materials Chemistry C, 2014, 2(23): 4606-4614. doi:  10.1039/c4tc00157e
[13] Chen T P, Hung F Y, Chang S P, et al. Optoelectronic properties of thermally evaporated ZnO films with nanowalls on glass substrates [J]. Applied Physics Express, 2013, 6(4): 045201. doi:  10.7567/APEX.6.045201
[14] Xu Q, Cheng Q, Zhong J, et al. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene lay-er [J]. Nanotechnology, 2014, 25(5): 055501. doi:  10.1088/0957-4484/25/5/055501
[15] Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain [J]. Nano Letters, 2007, 7(4): 1003. doi:  10.1021/nl070111x
[16] Wang Z, Zhan X, Wang Y, et al. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures [J]. Na-noscale, 2012, 4: 2678-2684.
[17] Ghosh D, Kapri S, Bhattacharyya S. Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bond-ing [J]. ACS Applied Materials & Interfaces, 2016: acsami.6b13037.