[1] Kemao Q. Windowed Fringe Pattern Analysis[M]. Washington: SPIE Press, 2013.
[2] Malacara D. Optical Shop Testing[M]. 3rd ed. New Jersey: John Wiley and Sons, 2007.
[3] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. Journal of the Optical Society of America A, 1982, 72(1): 156−160. doi:  10.1364/JOSA.72.000156
[4] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes [J]. Applied Optics, 1983, 22(24): 3977−3982. doi:  10.1364/AO.22.003977
[5] Kemao Q. Windowed Fourier transform for fringe pattern analysis [J]. Applied Optics, 2004, 43(13): 2695−2702. doi:  10.1364/AO.43.002695
[6] Zhang Z, Zhong J. Applicability analysis of wavelet-transform profilometry [J]. Optics Express, 2013, 21(16): 18777−18796. doi:  10.1364/OE.21.018777
[7] Jiang M, Chen W, Zheng Z, et al. Fringe pattern analysis by S-transform [J]. Optics Communications, 2012, 285: 209−217. doi:  10.1016/j.optcom.2011.09.015
[8] Zhong J. Phase retrieval of optical fringe patterns from the ridge of a wavelet transform [J]. Optics Letters, 2005, 30(19): 2560−2562. doi:  10.1364/OL.30.002560
[9] Da F, Dong F. Windowed Fourier transform profilometry based on improved S-transform [J]. Optics Letters, 2012, 37(17): 3561−3563. doi:  10.1364/OL.37.003561
[10] Fernandez S, Gdeisat M, Salvi J, et al. Automatic window size selection in windowed Fourier transform for 3D reconstruction using adapted mother wavelets [J]. Optics Communications, 2011, 284: 2797−2807. doi:  10.1016/j.optcom.2011.01.068
[11] Ma J, Wang Z, Vo M, et al. Wavelet selection in two-dimensional continuous wavelet transform technique for optical fringe pattern analysis [J]. Journal of Optics, 2012, 14: 065403. doi:  10.1088/2040-8978/14/6/065403
[12] Wang C, Da F. Phase demodulation using adaptive windowed Fourier transform based on Hilbert-Huang transform [J]. Optics Express, 2012, 20(16): 18459−18477. doi:  10.1364/OE.20.018459
[13] Tang Chen, Chen Mingming, Chen Xia, et al. Informaiton exaction methods based on variational image decomposition for electronic speckle pattern interferometry [J]. Acta Optica Sinica, 2018, 38(3): 0328002. (in Chinese) doi:  10.3788/AOS201838.0328002
[14] Huang N E, Shen S. S. P. Hilbert-Huang Transform and its Applications[M]. Singapore : Word Scientific, 2005.
[15] Lagubeau G, Cobelli P, Bobinski T, et al. Empirical mode decomposition profilometry: small-scale capabilities and comparison to Fourier transform profilometry [J]. Applied Optics, 2015, 54(32): 9409−9414. doi:  10.1364/AO.54.009409
[16] Huang N E, Shen Z, Steven R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A, 1998, 454: 903−995. doi:  10.1098/rspa.1998.0193
[17] Vincent L. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms [J]. IEEE Transactions on Image Processing, 1993, 2(2): 176−201. doi:  10.1109/83.217222
[18] Nunes J C, Bouaoune Y, Delechelle E, et al. Image analysis by bidimensional empirical mode decomposition [J]. Image and Vision Computing, 2003, 21: 1019−1026. doi:  10.1016/S0262-8856(03)00094-5
[19] Bhuiyan S M A, Adhami R R, Khan J F. Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation [J]. EURASIP Journal on Advances in Signal Processing, 2008, 2008: 728356. doi:  10.1155/2008/728356
[20] Trusiak M, Wielgus M, Patorski K. Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition [J]. Optics and Lasers in Engineering, 2014, 52: 230−240. doi:  10.1016/j.optlaseng.2013.06.003
[21] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31: 417−457. doi:  10.1146/annurev.fluid.31.1.417
[22] Huang N E, Wu M C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis [J]. Mathematical, Physical and Engineering Sciences, 2003, 459(2037): 2317−2345. doi:  10.1098/rspa.2003.1123
[23] Nunes J C, Niang O, Bouaoune Y, et al. Texture analysis based on the bidimensional empirical mode decomposition with gray-level co-occurrence models[C]// Seventh International Symposium on Signal Processing and its Applications, 2003: 8007630.
[24] Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1−41. doi:  10.1142/S1793536909000047
[25] Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method [J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135−136. doi:  10.1142/S1793536910000422
[26] Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]// IEEE International Conference on Acoustic, Speech and Signal Processing, 2011: 4144−4147.
[27] Wang W, Chen X. Multiscale modeling of fiber optic gyroscope temperature drift based on improved ensemble empirical mode decomposition [J]. Applied Optics, 2018, 57(28): 8443−8450. doi:  10.1364/AO.57.008443
[28] Deering R, Kaiser J F. The use of a masking signal to improve empirical mode decomposition[C]// IEEE International conference on Acoustic, Speech and Signal Processing, 2005: 485−488.
[29] Wang C, Da F. Differential signal-assisted method for adaptive analysis of fringe pattern [J]. Applied Optics, 2014, 53(27): 6222−6229. doi:  10.1364/AO.53.006222
[30] Wang C, Kemao Q, Da F. Regenerated phase-shifted sinusoid-assisted empirical mode decomposition [J]. IEEE Signal Processing Letters, 2016, 23(4): 556−560. doi:  10.1109/LSP.2016.2537376
[31] Wang C, Kemao Q, Da F. Automatic fringe enhancement with novel bidimensional sinusoids-assisted empirical mode decomposition [J]. Optics Express, 2017, 25(20): 24299−24311. doi:  10.1364/OE.25.024299
[32] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms[C]// IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado(I), 2003.
[33] Rilling G, Flandrin P. One or two frequencies? The empirical mode decomposition answers [J]. IEEE Transactions on Signal Processing, 2008, 56(1): 85−95. doi:  10.1109/TSP.2007.906771
[34] Chang L, Lo M, Anssari N, et al. Parallel implementation of multi-dimensional ensemble empirical mode decomposition[C]// IEEE International Conference on Acoustic, Speech and Signal Processing, 2011: 1621−1624.
[35] Bernini M B, Galizzi G E, Federico A, et al. Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes [J]. Optics and Lasers in Engineering, 2007, 45: 723−729. doi:  10.1016/j.optlaseng.2006.10.007
[36] Bernini M B, Federico A, Kaufmann G H. Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition [J]. Applied Optics, 2008, 47(14): 2592−2598. doi:  10.1364/AO.47.002592
[37] Bernini M B, Federico A, Kaufmann G H. Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition [J]. Applied Optics, 2011, 50(5): 641−647. doi:  10.1364/AO.50.000641
[38] Zhou X, Zhao H, Jiang T. Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithms [J]. Optics Letters, 2009, 34(13): 2033−2035. doi:  10.1364/OL.34.002033
[39] Su W, Lee CK, Lee CW. Noise-reduction for fringe analysis using the empirical mode decomposition with the generalized analysis model [J]. Optics and Lasers in Engineering, 2010, 48: 212−217. doi:  10.1016/j.optlaseng.2009.07.007
[40] Wang C, Da F. Phase retrieval for noisy fringe pattern by using empirical mode decomposition and Hilbert Huang transform [J]. Optical Engineering, 2012, 51(6): 061306. doi:  10.1117/1.OE.51.6.061306
[41] Wang C, Kemao Q, Da F. Regenerated Phase-shifted sinusoids assisted EMD for adaptive analysis of fringe patterns [J]. Optics and Lasers in Engineering, 2016, 87: 176−184. doi:  10.1016/j.optlaseng.2016.04.018
[42] Zhou Y, Li H. Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition [J]. Optics Express, 2011, 19(19): 18207−18215. doi:  10.1364/OE.19.018207
[43] Zhou Y, Li H. Enhancement strategy based on three-layer filtering for a single fringe pattern [J]. Optics letters, 2013, 8(20): 4124−4127.
[44] Zhou Y, Li H. A denoising scheme for DSPI fringes based on fast bidimensional ensemble empirical mode decomposition and BIMF energy estimation [J]. Mechanical Systems and Signal Processing, 2013, 35: 369−382. doi:  10.1016/j.ymssp.2012.09.009
[45] Wu Z, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proceedings of the Royal Society A, 2004, 460: 1597−1611. doi:  10.1098/rspa.2003.1221
[46] Trusiak M, Patorski K, Wielgus M. Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform [J]. Optics Express, 2012, 20(21): 23463−23479. doi:  10.1364/OE.20.023463
[47] Trusiak M, Patorski K, Pokorski K. Hilbert-Huang processing for single-exposure two-dimensional grating interferometry [J]. Optics Express, 2013, 21(23): 28359−28379. doi:  10.1364/OE.21.028359
[48] Patorski K, Trusiak M, Pokorski K. Diffraction grating three-beam interferometry without self-imaging regime contrast modulation [J]. Optics Letters, 2015, 40(6): 1089−1092. doi:  10.1364/OL.40.001089
[49] Trusiak M, Patorski K. Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang prefiltering [J]. Optics Express, 2015, 23(4): 4672−4690. doi:  10.1364/OE.23.004672
[50] Trusiak M, Styk A, Patorski K. Hilbert-Huang transform based advanced Bessel fringe generation and demodulation for full-field vibration studies of specular reflection micro-objects [J]. Optics and Lasers in Engineering, 2018, 110: 100−112. doi:  10.1016/j.optlaseng.2018.05.021
[51] Bodriguez F A M, Federico A, Kaufmann G H. Hilbert transform analysis of a time series of speckle interferograms with a temporal carrier [J]. Applied Optics, 2008, 47(9): 1310−1316. doi:  10.1364/AO.47.001310
[52] Deng W, Liu Z, Deng Z, et al. Extraction of interference phase in frequency-scanning interferometry based on empirical mode decomposition and Hilbert transform [J]. Applied Optics, 2018, 57(9): 2299−2305. doi:  10.1364/AO.57.002299
[53] Li Sikun, Chen Wenjing, Su Xianyu, et al. Empirical mode decomposition method for eliminating extention of zero component in Fourier transorm profilometry [J]. Acta Optica Sinica, 2009, 29(3): 664−669. (in Chinese) doi:  10.3788/AOS20092903.0664
[54] Bernini M B, Federico A, Kaufmann G H. Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform [J]. Applied Optics, 2009, 48(36): 6862−6869. doi:  10.1364/AO.48.006862
[55] Patorski K, Trusiak M, Tkaczyk T. Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing [J]. Optics Express, 2014, 22(8): 9517−9527. doi:  10.1364/OE.22.009517
[56] Zhang C, Ren W, Mu T, et al. Empirical mode decomposition based background removal and de-noising in polarization interference imaging spectrometer [J]. Optics Express, 2013, 21(3): 2592−2605. doi:  10.1364/OE.21.002592
[57] Osman S, Wang W. An enhanced Hilbert-Huang transform technique for bearing condition monitoring [J]. Measurement Science and Technology, 2013, 24: 085004. doi:  10.1088/0957-0233/24/8/085004
[58] Zhou X, Podoleanu A G, Yang Z, et al. Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns [J]. Optics Express, 2012, 20(22): 24247−24262. doi:  10.1364/OE.20.024247
[59] Wang C, Da F, Lu K. Modified local mean decomposition algorithm for adaptive analysis of fringe patterns [J]. Chinese Optics Letters, 2014, 12(S): S11003.
[60] Dabov K, Foi A, KatKovnk V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080−2095. doi:  10.1109/TIP.2007.901238