[1] 杨加强, 程德文, 王庆丰, 等. 新型大视场消杂光眼底相机光学系统的设计[J]. 光学学报, 2012, 32(11): 1122002. doi:  1122002

Yang Jiaqiang, Cheng Dewen, Wang Qingfeng, et al. Design of a novel wide view-field angle and anti-stray-light fundus camera [J]. Acta Optica Sinica, 2012, 32(11): 1122002. (in Chinese) doi:  1122002
[2] 李灿, 宋淑梅, 刘英, 等. 折反式眼底相机光学系统设计[J]. 光学 精密工程, 2012, 20(8): 1710-1717. doi:  10.3788/OPE.20122008.1710

Li Can,Song Shumei,Liu Ying,et al. Design of optical system for catadioptric fundus camera [J]. Optics and Precision Engineering, 2012, 20(8): 1710-1717. (in Chinese) doi:  10.3788/OPE.20122008.1710
[3] 刘丽丽, 黄涛, 蔡敏, 等. 大视场液晶自适应视网膜成像系统[J]. 光学 精密工程, 2013, 21(2): 301-307.

Liu Lili, Huang Tao, Cai Min, et al. Retinal imaging system with large field of view based on liquid crystal adaptive optics [J]. Optics & Precision Engineering, 2013, 21(2): 301-307. (in Chinese)
[4]

Webb R H, Hughes G W. Scanning laser ophthalmoscope [J]. IEEE Transactions on Biomedical Engineering, 1981, BME-28(7): 488-492. doi:  10.1109/TBME.1981.324734
[5]

Webb R H, Hughes G W, Delori F C. Confocal scanning laser ophthalmoscope [J]. Applied Optics, 1987, 26(8): 1492-1499. doi:  10.1364/AO.26.001492
[6]

Swanson E A, Izatt J A, Hee M R, et al. In vivo retinal imaging by optical coherence tomography [J]. Optics Letters, 1993, 18(21): 1864-1866. doi:  10.1364/OL.18.001864
[7]

Shiroki K. Fluorescein fundus angiography [J]. Ophthalmology, 2004, 46(11): 1355-1364.
[8]

Wojtkowski M, Kaluzny B, Zawadzki R J,et al. New directions in ophthalmic optical coherence tomography [J]. Optom Vis Sci, 2012, 89(5): 524-542. doi:  10.1097/OPX.0b013e31824eecb2
[9]

Miller D T, Kurokawa K. Cellular scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography [J]. Annual Review of Vision Science, 2020, 6(1): 19.1-19.34.
[10]

Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181. doi:  10.1126/science.1957169
[11] 邓可然, 魏凯, 晋凯, 等. 1.8米望远镜钠信标自适应光学系统的高对比度成像性能研究[J]. 红外与激光工程, 2020, 49(8): 20200058. doi:  20200058

Deng Keran, Wei Kai, Jin Kai, et al. Research on high-contrast imaging performance of 1.8 m telescope sodium beacon adaptive optical system [J]. Infrared and Laser Engineering, 2020, 49(8): 20200058. (in Chinese) doi:  20200058
[12] 何杰铃, 魏凌, 杨金生, 等. 基于变形镜激光束整形系统中的相位拟合优化方法[J]. 激光与光电子学进展, 2016, 53(2): 020101. doi:  020101

He Jieling, Wei Ling, Yang Jinsheng, et al. Phase fitting optimization method to laser beam shaping system based on deformable mirror [J]. Laser & Optoelectronics Progress, 2016, 53(2): 020101. (in Chinese) doi:  020101
[13]

Simmonds R D, Salter P S, Jesacher A, et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system [J]. Optics Express, 2011, 19(24): 24122-24128. doi:  10.1364/OE.19.024122
[14] 王昕. 面向非定常流场的实时自适应PIV测量技术研究[D]. 武汉: 华中科技大学, 2017.

Wang Xin. Research of real-time adaptive PIV measurement technique oriented to unsteady flow field[D]. Wuhan: Huazhong University of Science and Technology, 2017. (in Chinese)
[15] 金利民, 罗红心, 王劼, 等. 双压电片镜在同步辐射光源光学系统中的应用[J]. 中国光学, 2017, 10(6): 699-707. doi:  10.3788/co.20171006.0699

Jin Limin, Luo Hongxin, Wang Jie, et al. Application of bimorph mirror in the optical system of synchrotron radiation light source [J]. Chinese Optics, 2017, 10(6): 699-707. (in Chinese) doi:  10.3788/co.20171006.0699
[16]

Liang J, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics [J]. Journal of the Optical Society of America A Optics Image Science& Vision, 1997, 14(11): 2884-2892.
[17] 刘立新, 张美玲, 吴兆青, 等. 自适应光学在荧光显微镜中的应用[J]. 激光与光电子学进展, 2020, 57(12): 120001. doi:  120001

Liu Lixin, Zhang Meiling, Wu Zhaoqing, et al. Application of adaptive optics in fluorescence microscope [J]. Laser & Optoelectronics Progress, 2020, 57(12): 120001. (in Chinese) doi:  120001
[18]

Chernyshov A, Sterr U, Riehle F, et al. Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts [J]. Appl Opt, 2005, 44(30): 6419-6425. doi:  10.1364/AO.44.006419
[19]

Chamot S R, Dainty C, Esposito Simone. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor [J]. Opt Express, 2006, 14: 518-526. doi:  10.1364/OPEX.14.000518
[20]

Rueckel M, Denk W. Coherence-gated wavefront sensing using a virtual Shack–Hartmann sensor[C]// SPIE, 2006, 6306: 63060H.
[21]

Tuohy S, Podoleanu A Gh. Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor [J]. Opt Express, 2010, 18: 3458-3476. doi:  10.1364/OE.18.003458
[22]

Rueckel Markus, Denk Winfried. Properties of coherence-gated wavefront sensing [J]. J Opt Soc Am A Opt Image Vis, 2007, 24(11): 3517-3529. doi:  10.1364/JOSAA.24.003517
[23]

Wang Jingyu, Podoleanu A Gh. Time-domain coherence-gated Shack-Hartmann wavefront sensor[C]// SPIE, 2011, 8091: 80911L.
[24]

Wang J, Podoleanu A G. Swept-source coherence-gated Shack-Hartmann wavefront sensor[C]// SPIE, 2012, 8213: 42.
[25]

Wang J, Podoleanu A G. Demonstration of depth-resolved wavefront sensing using a swept-source coherence-gated Shack-Hartmann wavefront sensor[C]// SPIE Bios International Society for Optics and Photonics, 2015.
[26]

Hermann B, Fernández EJ, Unterhuber A, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography [J]. Optics Letters, 2004, 29(18): 2142-2144. doi:  10.1364/OL.29.002142
[27]

Zhang Y, Rha J, Jonnal R, et al. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina [J]. Opt Express, 2005, 13(12): 4792-4811. doi:  10.1364/OPEX.13.004792
[28]

Zawadzki R J, Jones S M, Olivier S S, et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging [J]. Opt Express, 2005, 13(21): 8532-8546. doi:  10.1364/OPEX.13.008532
[29]

Merino D, Dainty C, Bradu A, et al. Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy [J]. Opt Express, 2006, 14(8): 3345-3353. doi:  10.1364/OE.14.003345
[30]

Bigelow C E, Iftimia N V, Ferguson R D, et al. Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging [J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2007, 24(5): 1327-1336.
[31]

Shi G H, Ding Z H, Dai Y, et al. Adaptive optics optical coherence tomography based on a 61-element deformable mirror [J]. Journal of Physics Conference Series, 2006, 48(1): 506-510.
[32]

Fernández E J, Povazay B, Hermann B, et al. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator [J]. Vision Res, 2005, 45(28): 3432-3444. doi:  10.1016/j.visres.2005.08.028
[33]

Jian Y, Zawadzki R J, Sarunic M V. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging [J]. Biomed Opt, 2013, 18(5): 056007. doi:  10.1117/1.JBO.18.5.056007
[34]

Jian Y, Xu J, Gradowski M A, et al. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice [J]. Biomed Opt Express, 2014, 5(2): 547-559. doi:  10.1364/BOE.5.000547
[35]

Zawadzki R J, Choi S S, Jones S M, et al. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions [J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2007, 24(5): 1373. doi:  10.1364/JOSAA.24.001373
[36]

Hammer D X, Ferguson R D, Mujat M. Multimodal adaptive optics retinal imager: design and performance [J]. J Opt Soc Am, A, 2012, 29(12): 2598-2607. doi:  10.1364/JOSAA.29.002598
[37]

Jonnal R S, Qu J, Thorn K, et al. En-face coherence gating of the retina with adaptive optics [J]. Investigative Ophthalmology & Visualence, 2003, 44: U275-U275.
[38]

Pircher M, Zawadzki R J, Evans J W, et al. Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography [J]. Optics Letters, 2008, 33(1): 22-24. doi:  10.1364/OL.33.000022
[39]

Ginner L, Kumar A, Fechtig D, et al. Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo [J]. Optica, 2017, 4(8): 924-31. doi:  10.1364/OPTICA.4.000924
[40]

Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source [J]. Optics Letters, 1997, 22(5): 340-342. doi:  10.1364/OL.22.000340
[41]

Unterhuber A, Povazay B, Hermann B, et al. In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid [J]. Optics Express, 2005, 13(9): 3252-8. doi:  10.1364/OPEX.13.003252
[42]

Bourquin S, Aguirre A D, Hartl I, et al. Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: Glass laser and nonlinear fiber [J]. Opt Express, 2003, 11: 3290-3297. doi:  10.1364/OE.11.003290
[43]

Lim H, Jiang Y, Wang Y, et al. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm [J]. Optics Letters, 2005, 30(10): 1171-1180.
[44]

Yun S H, Tearney G J, Boer J F de, et al. High-speed optical frequency-domain imaging [J]. Opt Express, 2003, 11: 2953-2963. doi:  10.1364/OE.11.002953
[45]

Yun S H, Tearney G J, Boer J F de, et al. Catheter-based optical frequency domain imaging at 36 frames per second[C]// Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 2005: 5690-5916.
[46]

Kowalczyk M, Martynkien T, Mergo P, et al. Ultrabroadband wavelength-swept source based on total mode-locking of an Yb: CaF2 laser [J]. Photonics Research, 2019, 7(2): 182-186.
[47]

Lee E C, Boer J F D, Mujat M, et al. In vivo optical frequency domain imaging of human retina and choroid [J]. Optics Express, 2006, 14(10): 4403-4411. doi:  10.1364/OE.14.004403
[48]

Kurokawa K, Sasaki K, Makita S, et al. Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography [J]. Opt Express, 2010, 18(8): 8515-8527. doi:  10.1364/OE.18.008515
[49]

Mujat M, Ferguson R D, Patel A H , et al. High resolution multimodal clinical ophthalmic imaging system [J]. Opt Express, 2010, 18(11): 11607-11621. doi:  10.1364/OE.18.011607
[50]

Grulkowski I, Liu J J, Potsaid B, et al. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with verticalcavity surface emitting lasers [J]. Biomed Opt Express, 2012, 3(11): 2733-2751. doi:  10.1364/BOE.3.002733
[51]

Klein T, Wieser W, Reznicek L, et al. Multi-MHz retinal OCT [J]. Biomed Opt Express, 2013, 4(10): 1890-1908. doi:  10.1364/BOE.4.001890
[52]

Jian Y, Lee S, Ju M J, et al. Lens-based wavefront sensorless adaptive optics swept source OCT [J]. Entific Reports, 2016, 6(1): 27620.
[53]

Azimipour M, Migacz J V, Zawadzki R J, et al. Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz [J]. Optica, 2019, 6(3): 300-303. doi:  10.1364/OPTICA.6.000300
[54]

Azimipour M, Jonnal R S, Werner J S, et al. Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging [J]. Opt Lett, 2019, 44(17): 4219-4222. doi:  10.1364/OL.44.004219
[55] 姜文汉, 凌宁, 张雨东, 等. 自适应光学在视觉科学和眼科医学领域中的应用[C]// 中国光学学会2006年学术大会论文摘要集, 2006.

Jiang Wenhan, Ling Ning, Zhang Yudong, et al. Application of adaptive optics in vision science and ophthalmology[C]//Abstracts of 2006 Academic Conference of Chinese Optical Society, 2006. (in Chinese)
[56] 屈军乐, Jonnal R S, Thorn K E, 等. 基于自适应光学的视网膜单细胞光学相干层析成像技术[J]. 生物物理学报, 2004, 20(2): 104-108. doi:  10.3321/j.issn:1000-6737.2004.02.003

Qu Junle, Jonnal R S, Thorn K E, et al. Single cell imaging of the living human retina using adaptive optics and optical coherence tomography [J]. Acta Biophysica Sinica, 2004, 20(2): 104-108. (in Chinese) doi:  10.3321/j.issn:1000-6737.2004.02.003
[57] 张雨东, 姜文汉, 史国华, 等. 自适应光学的眼科学应用[J]. 中国科学, 2007, 37(1): 68-74.

Zhang Yudong, Jiang Wenhan, Shi Guohua, et al. Application of adaptive optics in ophthalmology [J]. Science in China, 2007, 37(1): 68-74. (in Chinese)
[58] 江旻珊. 先进眼科多模态成像技术研究[D]. 上海: 上海交通大学, 2011.

Jiang Minshan. Advanced multi modal imaging technology of the eye[D]. Shanghai: Shanghai Jiao Tong University, 2011. (in Chinese)
[59] 钮赛赛. 基于自适应光学高分辨率微型成像系统关键技术研究[D]. 南京: 南京航空航天大学, 2012.

Niu Saisai. Research on key technology of adaptive optics based high resolution micro-imaging system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[60]

Liu R X, Zheng X L, Li D Y, et al. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera [J]. Chin Phys B, 2014, 23(9): 094211. doi:  10.1088/1674-1056/23/9/094211
[61] 郑贤良, 刘瑞雪, 夏明亮, 等. 液晶 自适应光学视网膜校正成像技术研究[J]. 中国光学, 2014, 7(1): 98-104.

Zneng Xianliang, Liu Ruixue, Xia Mingliang, et al. Retinal correction imaging system based on liquid crystal adaptive optics [J]. Chinese Optics, 2014, 7(1): 98-104. (in Chinese)
[62] 刘浩. 基于双变形镜的人眼像差校正研究[D]. 南京: 南京航空航天大学, 2015.

Liu Hao. Research on aberration correction of human eye based on double deformable mirrors[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
[63]

Fernández E, Unterhuber A, Prieto P, et al. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser [J]. Opt Express, 2005, 13(2): 400-409. doi:  10.1364/OPEX.13.000400
[64]

Bedford R E, Wyszecki G. Axial chromatic aberration of the human eye [J]. J Opt Soc Am, 1957, 47(6): 564-565. doi:  10.1364/JOSA.47.000564
[65]

Harmening W M, Tiruveedhula P, Roorda A, et al. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye [J]. Biomed Opt Express, 2012, 3(9): 2066-2077.
[66]

Fernández E J, Hermann B, Povazay B, et al. Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina [J]. Opt Express, 2008, 16(15): 11083-11094. doi:  10.1364/OE.16.011083
[67]

Zawadzki R J, Cense B, Zhang Y, et al. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction [J]. Opt Express, 2008, 16(11): 8126-8143. doi:  10.1364/OE.16.008126
[68]

Zawadzki R J, Jones S M, Pilli S, et al. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging [J]. Biomed Opt Express, 2011, 2(6): 1674-1686. doi:  10.1364/BOE.2.001674
[69]

Felberer F, Kroisamer J S, Baumann B, et al. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo [J]. Biomed Opt Express, 2014, 5(2): 439-456. doi:  10.1364/BOE.5.000439
[70]

Kocaoglu O P, Lee S, Jonnal R S, et al. Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics [J]. Biomed Opt Express, 2011, 2(4): 748-763. doi:  10.1364/BOE.2.000748
[71]

Azimipour M, Zawadzki R J, Gorczynska I, et al. Intraframe motion correction for raster-scanned adaptive optics images using strip-based cross-correlation lag biases [J]. PLOS ONE, 2018, 13(10): e0206052. doi:  10.1371/journal.pone.0206052
[72]

Kocaoglu O P, Ferguson R D, Jonnal R S, et al. Adaptive optics optical coherence tomography with dynamic retinal tracking [J]. Biomed Opt Express, 2014, 5(7): 2262-2284. doi:  10.1364/BOE.5.002262
[73]

Bedggood P, Daaboul M, Ashman R, et al. Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging [J]. Biomed Opt, 2008, 13(2): 024008. doi:  10.1117/1.2907211
[74]

Thaung J, Knutsso P. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging [J]. Opt Express, 2009, 17(6): 4454-4467. doi:  10.1364/OE.17.004454
[75]

Klein T, Wieser W, Eigenwillig C M, et al. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser [J]. Opt Express, 2011, 19(4): 3044-3062. doi:  10.1364/OE.19.003044
[76]

Bonora S, Zawadzki R J. Wavefront sensorless modal deformable mirror correction in adaptive optics optical coherence tomography [J]. Opt Lett, 2013, 38(22): 4801-4804. doi:  10.1364/OL.38.004801
[77]

Wong K S, Jian Y, Cua M, et al. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography [J]. Biomed Opt Express, 2015, 6(2): 580-590. doi:  10.1364/BOE.6.000580
[78]

Xiao P, Fink M, Boccara A C. Adaptive optics full-field optical coherence tomography [J]. Biomed Opt, 2016, 21(12): 121505. doi:  10.1117/1.JBO.21.12.121505
[79]

Bonora S, Jian Y, Zhang P, et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens [J]. Opt Express, 2015, 23(17): 21931-21941. doi:  10.1364/OE.23.021931
[80]

Verstraete H R G W, Wahls S, Kalkman J, et al. Model-based sensor-less wavefront aberration correction in optical coherence tomography [J]. Opt Lett, 2015, 40(24): 5722-5725. doi:  10.1364/OL.40.005722
[81]

Polans J, Keller B, Zevallos O M Carrasco, et al. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions [J]. Biomed Opt Express, 2017, 8(1): 16-37. doi:  10.1364/BOE.8.000016
[82]

Verstraete H R G W, Heisler M, Ju M J, et al. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [J]. Biomedical Optics Express, 2017, 8(4): 2261. doi:  10.1364/BOE.8.002261
[83]

Kumar A, Kamali T, Platzer R, et al. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT [J]. Biomed Opt Express, 2015, 6(4): 1124-1134. doi:  10.1364/BOE.6.001124
[84]

Pande P, Liu Y Z, South F A, et al. Automated computational aberration correction method for broadband interferometric imaging techniques [J]. Opt Lett, 2016, 41(14): 3324-3327. doi:  10.1364/OL.41.003324
[85]

Xu Y, Liu Y Z, Boppart S A, et al. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography [J]. Appl Opt, 2016, 55(8): 2034-2041. doi:  10.1364/AO.55.002034
[86]

Hillmann D, Spahr H, Hain C, et al. Aberration free volumetric high-speed imaging of in vivo retina [J]. Sci Rep, 2016, 6: 35209. doi:  10.1038/srep35209
[87]

Xiao P, Fink M, Boccara A C. Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations [J]. Opt Lett, 2016, 41(17): 3920-3923. doi:  10.1364/OL.41.003920
[88]

Ginner Laurin, Schmoll Tilman, Kumar Abhishek, et al. Holographic line field En-face OCT with digital adaptive optics in the retina in vivo [J]. Biomedical Optics Express, 2018, 9(2): 472-485.
[89]

South F A, Kurokawa K, Liu Z, et al. Combined hardware and computational optical wavefront correction [J]. Biomed Opt Express, 2018, 9(6): 2562-2574. doi:  10.1364/BOE.9.002562
[90]

Graciano P D Y, Angulo A, Lopez-Mago D, et al. Spectrally-resolved Hong-Ou-Mandel interferometry for quantum-optical coherence tomography [J]. Photonics Research, 2020, 8(6): 1023-1034.