[1] Zou Y, Chakravarty S, Chung C-J, et al. Mid-infrared silicon photonic waveguides and devices [Invited] [J]. Photonics Research, 2018, 6(4): 254-276.
[2] Lin H, Sun B, Ma H, et al. Review of mid-infrared on-chip integrated photonics (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20211111. (in Chinese)
[3] Ma H, Yang H, Tang B, et al. Passive devices at 2 μm wavelength on 200 mm CMOS compatible silicon photonics platform [Invited] [J]. Chinese Optics Letters, 2021, 19(7): 071301.
[4] Lambrecht A, Schmitt K. Mid-infrared gas-sensing systems and applications [C]// Mid-infrared Optoelectronics, 2020: 661-715.
[5] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs [J]. Nature Photonics, 2012, 6(7): 440-449. doi:  10.1038/nphoton.2012.142
[6] Neetesh S, Alvaro C B, Hudson D, et al. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide [J]. Optics Letters, 2016, 41(24): 5776-5779. doi:  10.1364/OL.41.005776
[7] Dong L, Tittel F K, Li C, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing [J]. Optics Express, 2016, 24(6): A528-A535. doi:  10.1364/OE.24.00A528
[8] Ottonello-Briano F, Errando-herranz C, Rdjegrd H, et al. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide [J]. Optics Letters, 2019, 45(1): 109-112.
[9] Wang Y, Shu H, Han X. High-precision silicon-based integrated optical temperature sensor [J]. Chinese Optics, 2021, 14(6): 1355-1361. (in Chinese) doi:  10.37188/CO.2021-0054
[10] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene [J]. Science, 2015, 349(6244): 165-168. doi:  10.1126/science.aab2051
[11] Moser H, Pölz W, Waclawek J P, et al. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream [J]. Analytical and Bioanalytical Chemistry, 2016, 409: 729-739.
[12] Vainio M, Halonen L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy [J]. Physical Chemistry Chemical Physics, 2016, 18(6): 4266-4294. doi:  10.1039/C5CP07052J
[13] Kim S. Novel air temperature measurement using midwave hyperspectral Fourier transform infrared imaging in the carbon dioxide absorption band [J]. Remote Sensing, 2020, 12(11): 1860.
[14] Yang S, Yan X, Qin H, et al. Mid-infrared compressive hyperspectral imaging [J]. Remote Sensing, 2021, 13(4): 741.
[15] Stanley R. Plasmonics in the mid-infrared [J]. Nature Photon, 2012, 6: 409-411.
[16] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs [J]. Nature Photonics, 2019, 13(3): 158-169. doi:  10.1038/s41566-019-0358-x
[17] Li D, Zhou H, Hui X, et al. Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly (ethyl cyanoacrylate) [J]. Advanced Science, 2021, 8(20): 2101879.
[18] Henderson B, Khodabakhsh A, Metsälä M, et al. Laser spectroscopy for breath analysis: towards clinical implementation [J]. Applied Physics B, 2018, 124(8): 161. doi:  10.1007/s00340-018-7030-x
[19] Soref R. Mid-infrared photonics in silicon and germanium [J]. Nature Photonics, 2010, 4(8): 495-497. doi:  10.1038/nphoton.2010.171
[20] Chen Q, Nan X, Liang W, et al. Research progress of on-chip integrated optical sensing technology (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20210671. (in Chinese)
[21] Mashanovich G Z, Mitchell C J, Penades J S, et al. Germanium mid-infrared photonic devices [J]. Journal of Lightwave Technology, 2017, 35(4): 624-630. doi:  10.1109/JLT.2016.2632301
[22] Lin P T, Jung H, Kimerling L C, et al. Low-loss aluminium nitride thin film for mid-infrared microphotonics [J]. Laser & Photonics Reviews, 2014, 8(2): L23-L28.
[23] Ma P, Choi D-Y, Yu Y, et al. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared [J]. Optics Express, 2013, 21(24): 29927-29937. doi:  10.1364/OE.21.029927
[24] Lin H, Song Y, Huang Y, et al. Chalcogenide glass-on-graphene photonics [J]. Nature Photonics, 2017, 11(12): 798-805. doi:  10.1038/s41566-017-0033-z
[25] Mizaikoff B. Waveguide-enhanced mid-infrared chem/bio sensors [J]. Chemical Society Reviews, 2013, 42: 8683-8699.
[26] Hu T, Dong B, Luo X, et al. Silicon photonic platforms for mid-infrared applications [Invited] [J]. Photonics Research, 2017, 5(5): 417-430. doi:  10.1364/PRJ.5.000417
[27] Liu X, Cheng S, Liu H, et al. A survey on gas sensing technology [J]. Sensors, 2012, 12: 9635-9665. doi:  10.3390/s120709635
[28] Jane H, Ralph P T. Optical gas sensing: A review [J]. Measurement Science & Technology, 2013, 24(1): 012004.
[29] Dinh T V, Choi I Y, Son Y S, et al. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction [J]. Sensors and Actuators, B Chemical, 2016, 231: 529-538.
[30] Cetin A E, Coskun A, Galarreta B C, et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging [J]. Light: Science & Applications, 2014, 3(1): e122.
[31] Brolo A. Plasmonics for future biosensors [J]. Nature Photonics, 2012, 6(11): 709-713. doi:  10.1038/nphoton.2012.266
[32] Tombez L, Zhang E J, Orcutt J S, et al. Methane absorption spectroscopy on a silicon photonic chip [J]. Optica, 2017, 4(11): 1322-1325. doi:  10.1364/OPTICA.4.001322
[33] Jágerská J, Jouy P, Tuzson B, et al. Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy [J]. Optics Express, 2015, 23(2): 1512-1522. doi:  10.1364/OE.23.001512
[34] Schwarz B, Reininger P, Ristanić D, et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures [J]. Nature Communications, 2014, 5(1): 4085. doi:  10.1038/ncomms5085
[35] Shankar R, Leijssen R, Bulu I, et al. Mid-infrared photonic crystal cavities in silicon [J]. Optics Express, 2011, 19(6): 5579-5586. doi:  10.1364/OE.19.005579
[36] Liu Q, Ramirez J M, Vakarin V, et al. Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited] [J]. Optical Materials Express, 2018, 8(5): 1305-1312. doi:  10.1364/OME.8.001305
[37] Li W, Anantha P, Lee K H, et al. Spiral waveguides on germanium-on-silicon nitride platform for mid-IR sensing applications [J]. IEEE Photonics Journal, 2018, 10(3): 1-7.
[38] Kang J, Takenaka M, Takagi S. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits [J]. Optics Express, 2016, 24(11): 11855-11864. doi:  10.1364/OE.24.011855
[39] Xiao T-H, Zhao Z, Zhou W, et al. Mid-infrared high-Q germanium microring resonator [J]. Optics Letters, 2018: 43(12): 2885-2888.
[40] WU J, YUE G, CHEN W, et al. On-chip optical gas sensors based on group-IV materials [J]. ACS Photonics, 2020, 7(11): 2923-2940. doi:  10.1021/acsphotonics.0c00976
[41] Wang C, Yin L, Zhang L, et al. Metal oxide gas sensors: Sensitivity and influencing factors [J]. Sensors, 2010, 10(3): 2088-2106.
[42] Chang Y-c, Wägli P, Paeder V, et al. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip [J]. Lab on a Chip, 2012, 12(17): 3020-3023. doi:  10.1039/c2lc40601b
[43] Lin P, Singh V, Hu J, et al. Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides [J]. Lab on a Chip, 2013: 13(11): 2161-2166.
[44] Zou Y, Vijayraghavan K, Wray P, et al. Monolithically integrated quantum cascade lasers, detectors and dielectric waveguides at 9.5µm for far-infrared lab-on-chip chemical sensing[C]//Proceedings of the CLEO, 2015: STu4I.2.
[45] Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-microm wavelength region [J]. Applied Optics, 1973, 12(3): 555-563. doi:  10.1364/AO.12.000555
[46] Nedeljkovic M, Khokhar A Z, Hu Y, et al. Silicon photonic devices and platforms for the mid-infrared [J]. Optical Materials Express, 2013, 3(9): 1205-1214. doi:  10.1364/OME.3.001205
[47] Penades J S, Khokhar A, Nedeljkovic M, et al. Low-loss mid-infrared SOI slot waveguides [J]. IEEE Photonics Technology Letters, 2015, 27(11): 1197-1199.
[48] Lin P T, Kwok S W, Lin H Y G, et al. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing [J]. Nano Letters, 2014, 14(1): 231-238.
[49] Patimisco P, Spagnolo V, Vitiello M S, et al. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications [J]. Sensors, 2013, 13(1): 1329-1340. doi:  10.3390/s130101329
[50] Zheng S, Cai H, Xu L, et al. Silicon substrate-integrated hollow waveguide for miniaturized optical gas sensing [J]. Photonics Research, 2022, 10(1): 261-268. doi:  10.1364/PRJ.439434
[51] Petruci J, Wilk A, Cardoso A A, et al. A hyphenated preconcentrator-infrared-hollow-waveguide sensor system for N2O sensing [J]. Scientific Reports, 2018, 8(1): 5909.
[52] Vasiliev A, Malik A, Muneeb M, et al. On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators [J]. ACS Sensors, 2016, 1(11): 1301-1307.
[53] Mario L N, Benedetto T, Tommaso M, et al. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors [J]. Sensors, 2014, 14(3): 4831-4855.
[54] Jin L, Li M, He J J. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect [J]. Optics Communications, 2011, 284(1): 156-159. doi:  10.1016/j.optcom.2010.08.035
[55] Ren L, Wu X, Li M, et al. Ultrasensitive label-free coupled optofluidic ring laser sensor [J]. Optics Letters, 2012, 37(18): 3873-3875. doi:  10.1364/OL.37.003873
[56] Yebo N A, Lommens P, Hens Z, et al. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film [J]. Optics Express, 2010, 18(11): 11859-11866. doi:  10.1364/OE.18.011859
[57] Stievater T H, Pruessner M W, Park D, et al. Trace gas absorption spectroscopy using functionalized microring resonators [J]. Optics Letters, 2014, 39(4): 969-972. doi:  10.1364/OL.39.000969
[58] Troia B, Khokhar A Z, Nedeljkovic M, et al. Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared [J]. Optics Express, 2014, 22(20): 23990-24003.
[59] Chang Y, Dong B, Ma Y, et al. Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings [J]. Optics Express, 2020, 28(5): 6251-6260.
[60] Carlborg C F, Gylfason K B, Kamierczak A, et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips [J]. Lab on a Chip, 2010, 10(3): 281-290. doi:  10.1039/B914183A
[61] Ksendzov A, Lin Y. Integrated optics ring-resonator sensors for protein detection [J]. Optics Letters, 2005, 30(24): 3344-3346. doi:  10.1364/OL.30.003344
[62] Smith C J, Shankar R, Laderer M, et al. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators [J]. Optics Express, 2015, 23(5): 5491-5499. doi:  10.1364/OE.23.005491
[63] Chen Y, Lin H, Hu J, et al. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing [J]. ACS Nano, 2014, 8(7): 6955-6961. doi:  10.1021/nn501765k
[64] Lai W-C, Chakravarty S, Wang X, et al. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water [J]. Applied Physics Letters, 2011, 98: 023304.
[65] Lai W-C, Chakravarty S, Zou Y, et al. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy [J]. Optics Letters, 2013, 38(19): 3799-3802. doi:  10.1364/OL.38.003799
[66] Lai W-C, Chakravarty S, Wang X, et al. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide [J]. Optics Letters, 2011, 36(6): 984-986. doi:  10.1364/OL.36.000984
[67] Iqbal M, Gleeson M A, Spaugh B, et al. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(3): 654-661. doi:  10.1109/JSTQE.2009.2032510
[68] Skivesen N, Têtu A, Kristensen M, et al. Photonic-crystal waveguide biosensor [J]. Optics Express, 2007, 15(6): 3169-3176. doi:  10.1364/OE.15.003169
[69] Chakravarty S, Zou Y, Yan H, et al. Silicon chip integrated photonic sensors for biological and chemical sensing [C]//SPIE, 2016.
[70] Kraeh C, Martinez Hurtado J L, Popescu A, et al. Slow light enhanced gas sensing in photonic crystals [J]. Optical Materials, 2018, 76: 106-110. doi:  10.1016/j.optmat.2017.12.024
[71] Zou Y, Chakravarty S, Wray P, et al. Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire [J]. Optics Express, 2015, 23(5): 6965-6975.
[72] Zou Y, Chakravarty S, Chen R T. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities [J]. Applied Physics Letters, 2015, 107(8): 081109.
[73] Zou Y, Chakravarty S, Wray P, et al. Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection [J]. Sensors and Actuators B:Chemical, 2015, 221: 1094-1103. doi:  10.1016/j.snb.2015.07.061
[74] Rostamian A, Madadi-kandjani E, Dalir H, et al. Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared [J]. Nanophotonics, 2021, 10(6): 1675-1682. doi:  10.1515/nanoph-2020-0576
[75] Nazabal V, Baudet E, Chahal R, et al. Chalcogenide glasses for mid-IR photonic applications [C]//2014 IEEE Photonics Society Summer Topical Meeting Series, 2014.
[76] Mittal V, Nedeljkovic M, Rowe D J, et al. Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy [J]. Optics Letters, 2018, 43(12): 2913-2916. doi:  10.1364/OL.43.002913
[77] Gutierrez-arroyo A, Baudet E, Bodiou L, et al. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared [J]. Optics Express, 2016, 24(20): 23109-23117. doi:  10.1364/OE.24.023109
[78] Baudet E, Gutierrez-arroyo A, Baillieul M, et al. Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater [J]. Advanced Device Materials, 2017, 3(2): 23-29.
[79] Lin P T, Jung H, Kimerling L C, et al. Low-loss aluminium nitride thin film for mid-infrared microphotonics [J]. Laser & Photonics Reviews, 2014, 8(2): L23-L28.
[80] Jung H, Poot Menno, Tang H X. In-resonator variation of waveguide cross-sections for dispersion control of aluminum nitride micro-rings [J]. Optics Express, 2015, 23(24): 30634-30640.
[81] Pernice W, Xiong C, Schuck C, et al. High-Q aluminum nitride photonic crystal nanobeam cavities [J]. Applied Physics Letters, 2012, 100(9): 091105. doi:  10.1063/1.3690888
[82] Dong B, Luo X, Zhu S, et al. Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics [J]. Optics Letters, 2019, 44(1): 73-76. doi:  10.1364/OL.44.000073
[83] Belt M, Davenport M L, Bowers J E, et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates [J]. Optica, 2017, 4(5): 532-536. doi:  10.1364/OPTICA.4.000532
[84] Muttalib M F A, Chen R, Pearce S, et al. Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2014, 32: 041304.
[85] Vlk M, Datta A, Alberti S, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy [J]. Light: Science & Applications, 2021, 10(1): 26.
[86] Chaneliere C, Autran J L, Devine R A B, et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications [J]. Materials Science and Engineering: R: Reports, 1998, 22(6): 269-322. doi:  10.1016/S0927-796X(97)00023-5
[87] Lee C C, Tien C L, Sheu W S, et al. An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films [J]. Review of Scientific Instruments, 2001, 72(4): 2128-2133. doi:  10.1063/1.1357228
[88] Wu C-L, Hung Y, Fan R, et al. Tantalum pentoxide (Ta2O5) based athermal micro-ring resonator [J]. OSA Continuum, 2019, 2(4): 1198-1206. doi:  10.1364/OSAC.2.001198
[89] Saygin-Hinczewski D, Koc K, Sorar I, et al. Optical and structural properties of Ta2O5–CeO2 thin films [J]. Solar Energy Materials and Solar Cells, 2007, 91(18): 1726-1732. doi:  10.1016/j.solmat.2007.05.029
[90] Pi M, Zheng C, Zhao H, et al. Mid-infrared ChG-on-MgF2 waveguide gas sensor based on wavelength modulation spectroscopy [J]. Optics Letters, 2021, 46(19): 4797-4800.
[91] Li C, Zheng C, Dong L, et al. Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser [J]. Applied Physics B, 2016, 122(7): 185.
[92] Jin T, Lin H, Tiwald T, et al. Flexible mid-infrared photonic circuits for real-time and label-free hydroxyl compound detection [J]. Scientific Reports, 2019, 9(1): 4153.
[93] Chang C, Lin H, Lai M, et al. Flexible localized surface plasmon resonance sensor with metal-insulator-metal nanodisks on PDMS substrate [J]. Scientific Reports, 2018, 8: 11812.
[94] Neutens P, Lagae L, Borghs G, et al. Plasmon filters and resonators in metal-insulator-metal waveguides [J]. Optics Express, 2012, 20(4): 3408-3423. doi:  10.1364/OE.20.003408
[95] Wei Q, Xiao J, Yang D, et al. Ultra-compact electro-optic modulator based on alternative plasmonic material [J]. Appled Optics, 2021, 60(17): 5252-5257. doi:  10.1364/AO.425679
[96] Ansell D, Radko I P, Han Z, et al. Hybrid graphene plasmonic waveguide modulators [J]. Nature Communications, 2015, 6(1): 8846. doi:  10.1038/ncomms9846
[97] Zhang T, Shan F. Development and application of surface plasmon polaritons on optical amplification [J]. Journal of Nanomaterials, 2014, 7: 7-16.
[98] Izadi M A, Nouroozi R. Adjustable propagation length enhancement of the surface plasmon polariton wave via phase sensitive optical parametric amplification [J]. Scientific Reports, 2018, 8(1): 15495. doi:  10.1038/s41598-018-33831-y
[99] Kang T, Fan B, Qin J, et al. Mid-infrared active metasurface based on Si/VO2 hybrid meta-atoms [J]. Photonics Research, 2022, 10(2): 373-380. doi:  10.1364/PRJ.445571
[100] Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas [J]. Nature Communications, 2013, 4: 2154.
[101] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes [J]. Nano Letters, 2016, 16(2): 1502-1508. doi:  10.1021/acs.nanolett.5b05316
[102] Zhou H, Hui X, Li D, et al. Metal-organic framework‐surface‐enhanced infrared absorption platform enables simultaneous on‐chip sensing of greenhouse gases [J]. Advanced Science, 2020: 7(20): 2001173.
[103] Wei J, Li Y, Chang Y, et al. Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices [J]. ACS Appl Mater Interfaces, 2019, 11(50): 47270-47278. doi:  10.1021/acsami.9b18002
[104] Xu J, Ren Z, Dong B, et al. Nanometer-scale heterogeneous interfacial sapphire wafer bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy [J]. ACS Nano, 2020, 14(9): 12159-12172. doi:  10.1021/acsnano.0c05794
[105] Chang Y, Hasan D, Dong B, et al. All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance [J]. ACS Appl Mater Interfaces, 2018, 10(44): 38272-38279. doi:  10.1021/acsami.8b16623
[106] Neubrech F, Pucci A, Cornelius T W, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection [J]. Physical Review Letters, 2008, 101(15): 157403.
[107] Cho N J, Frank C W, Kasemo B, et al. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates [J]. Nature Protocols, 2010, 5(6): 1096-1106. doi:  10.1038/nprot.2010.65
[108] Rodrigo D, Tittl A, Ait-bouziad N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces [J]. Nature Communications, 2018, 9(1): 2160. doi:  10.1038/s41467-018-04594-x
[109] Maß T W W, Taubner T. Incident angle-tuning of infrared antenna array resonances for molecular sensing [J]. ACS Photonics, 2015, 2(10): 1498-1504. doi:  10.1021/acsphotonics.5b00399
[110] Agrawal A, Singh A, Yazdi S, et al. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals [J]. Nano Letters, 2017, 17(4): 2611-2620. doi:  10.1021/acs.nanolett.7b00404
[111] Baumberg J J, Aizpurua J, Mikkelsen M H, et al. Extreme nanophotonics from ultrathin metallic gaps [J]. Nature Materials, 2019, 18(7): 668-678. doi:  10.1038/s41563-019-0290-y
[112] Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas [J]. Nature Photonics, 2014, 8(11): 835-840.
[113] Chen X, Wang C, Yao Y, et al. Plasmonic vertically coupled complementary antennas for dual-mode infrared molecule sensing [J]. Acs Nano, 2017, 11(8): 8034-8046.
[114] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Lett, 2010, 10(7): 2342-2348. doi:  10.1021/nl9041033
[115] Brown L V, Yang X, Zhao K, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA) [J]. Nano Letters, 2015, 15(2): 1272-1280. doi:  10.1021/nl504455s
[116] Dong L, Yang X, Zhang C, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy [J]. Nano Letters, 2017: 17(9): 5768–5774.
[117] Miao X, Lingyue Y, Wu Y, et al. High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots [J]. Light: Science and Applications, 2021, 10(1): 5.
[118] Chen J, Xiong Y, Xu F, et al. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology [J]. Light:Science & Applications, 2021, 10 (1): 78.
[119] Zhu Y, Li Z, Hao Z, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface [J]. Light: Science & Applications, 2018, 7(1): 67.
[120] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers [J]. Science, 2021, 371(6528): eabe0722. doi:  10.1126/science.abe0722
[121] Mishchenko M I, Hovenier J W. Depolarization of light backscattered by randomly oriented nonspherical particles [J]. Optics Letters, 1995, 20(12): 1356-1358. doi:  10.1364/OL.20.001356
[122] Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy [J]. Nature, 1991, 351(6321): 81-82. doi:  10.1038/351081a0
[123] Rosema A. Potential of chlorophyll fluorescence for remote sensing of canopy photosynthesis[C]//Proceedings of the Proc OECD Workshop on Remote Sensing for Agriculture for the Environment, 2002.
[124] Lavchiev V M, Jakoby B. Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 452-463.
[125] Hasan M, Rad M, Hasan G M, et al. Ultra-high resolution wideband On-chip spectrometer [J]. IEEE Photonics Journal, 2020, 12(5): 1-17.
[126] Manley M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials [J]. Chemical Society Reviews, 2014, 43(24): 8200-8214. doi:  10.1039/C4CS00062E
[127] Ouzounov D, Freund F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data [J]. Advances in Space Research, 2004, 33(3): 268-273. doi:  10.1016/S0273-1177(03)00486-1
[128] Kita D M, Miranda B, Favela D, et al. High-performance and scalable on-chip digital Fourier transform spectroscopy [J]. Nature Communications, 2018, 9 (1): 4405.
[129] Li A, Fainman Y. Integrated silicon Fourier transform spectrometer with broad bandwidth and ultra‐high resolution [J]. Laser & Photonics Reviews, 2021, 15(4): 2000358.
[130] Lin Z, Dadalyan T, Bélanger-de Villers S, et al. Chip-scale full-Stokes spectropolarimeter in silicon photonic circuits [J]. Photonics Research, 2020, 8(6): 864-874. doi:  10.1364/PRJ.385008
[131] Xia Z, Eftekhar A A, Soltani M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators [J]. Optics Express, 2011, 19(13): 12356-12364. doi:  10.1364/OE.19.012356
[132] Sarwar T, Cheekati S, Chung K, et al. On-chip optical spectrometer based on GaN wavelength-selective nanostructural absorbers [J]. Applied Physics Letters, 2020, 116(8): 081103. doi:  10.1063/1.5143114
[133] Dinh T T D, González-Andrade D, Montesinos-Ballester M, et al. Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot's advantage [J]. Optics Letters, 2021, 46(6): 1341-1344.
[134] González-Andrade D, Dinh T T D, Guerber S, et al. Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input [J]. Optics Letters, 2021, 46(16): 4021-4024. doi:  10.1364/OL.438361
[135] Liu T, Fiore A. Designing open channels in random scattering media for on-chip spectrometers [J]. Optica, 2020, 7(8): 934-939. doi:  10.1364/OPTICA.391612
[136] Yuan S, Naveh D, Watanabe K, et al. A wavelength-scale black phosphorus spectrometer [J]. Nature Photonics, 2021, 15(8): 601-607. doi:  10.1038/s41566-021-00787-x
[137] Lee H S, Hwang G W, Seong T Y, et al. Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer [J]. Scientific Reports, 2021, 11(1): 12218. doi:  10.1038/s41598-021-91762-7
[138] Zhang L, Chen J, Ma C, et al. Research progress on on‐chip Fourier transform spectrometer [J]. Laser & Photonics Reviews, 2021, 15(9): 2100016.
[139] Florjańczyk M, Cheben P, Janz S, et al. Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers [J]. Optics Express, 2007, 15(26): 18176-18189. doi:  10.1364/OE.15.018176
[140] Nedeljkovic M, Velasco A V, Khokhar A Z, et al. Mid-infrared silicon-on-insulator fourier-transform spectrometer chip [J]. IEEE Photonics Technology Letters, 2016, 28(4): 528-531. doi:  10.1109/LPT.2015.2496729
[141] Heidari E, Xu X, Chung C-J, et al. On-chip Fourier transform spectrometer on silicon-on-sapphire [J]. Optics Letters, 2019, 44(11): 2883-2886.
[142] Liu Q, Ramirez J M, Vakarin V, et al. Integrated broadband dual-polarization Ge-rich SiGe mid-infrared Fourier-transform spectrometer [J]. Optics Letters, 2018, 43(20): 5021-5024. doi:  10.1364/OL.43.005021
[143] Montesinos-Ballester M, Liu Q, Vakarin V, et al. On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect [J]. Scientific Reports, 2019, 9(1): 14633. doi:  10.1038/s41598-019-50947-x
[144] Fathy A, Sabry Y M, Nazeer S, et al. On-chip parallel Fourier transform spectrometer for broadband selective infrared spectral sensing [J]. Microsystems & Nanoengineering, 2020, 6 (1): 10. doi:  10.1038/s41378-019-0111-0
[145] KEIlmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer [J]. Optics Letters, 2004, 29(13): 1542-1544. doi:  10.1364/OL.29.001542
[146] Picqué N, Hänsch T W. Frequency comb spectroscopy [J]. Nature Photonics, 2019, 13(3): 146-157. doi:  10.1038/s41566-018-0347-5
[147] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy [J]. Optica, 2016, 3(4): 414-426. doi:  10.1364/OPTICA.3.000414
[148] Del’haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
[149] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science , 2018, 361(6402): eaan8083. doi:  10.1126/science.aan8083
[150] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy [J]. Nature Communications, 2018, 9(1): 1869. doi:  10.1038/s41467-018-04350-1
[151] Lin T, Dutt A, Joshi C, et al. Broadband ultrahigh-resolution chip-scale scanning soliton dual-comb spectroscopy [J]. arXiv preprint, 2020: 200100869.
[152] Rogalski A. HgCdTe photodetectors [C]//Mid-infrared Optoelectronics, 2020: 235-335.
[153] Steenbergen E H. InAsSb-based photodetectors [C]//Mid-infrared Optoelectronics, 2020: 415-453.
[154] Liu C, Guo J, Yu L, et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared [J]. Light: Science & Applications, 2021, 10(1): 123. doi:  10.1038/s41377-021-00551-4
[155] Du W, Yu S-Q. Group IV photonics using (Si)GeSn technology toward mid-IR applications [C]//Mid-infrared Optoelectronics, 2020: 493-538.
[156] Chen J, Wang J, Li X, et al. Recent progress in improving the performance of infrared photodetectors via optical field manipulations [J]. Sensors, 2022, 22(2): 677.
[157] Carmody M, Pasko J G, Edwall D, et al. Status of LWIR HgCdTe-on-silicon FPA technology [J]. Journal of Electronic Materials, 2008, 37(9): 1184-1188. doi:  10.1007/s11664-008-0434-3
[158] Dhar N K, Tidrow M Z. Large-format IRFPA development on silicon[C]//SPIE, 2004: 5564.
[159] Wu J, Jiang Q, Chen S, et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates [J]. ACS Photonics, 2016, 3(5): 749-753. doi:  10.1021/acsphotonics.6b00076
[160] Jia B W, Tan K H, Loke W K, et al. Monolithic integration of insb photodetector on silicon for mid-infrared silicon photonics [J]. ACS Photonics, 2018, 5(4): 1512-1520. doi:  10.1021/acsphotonics.7b01546
[161] Delli E, Letka V, Hodgson P D, et al. Mid-Infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon [J]. ACS Photonics, 2019, 6(2): 538-544. doi:  10.1021/acsphotonics.8b01550
[162] Wu E, Wu D, Jia C, et al. In situ fabrication of 2 D WS2/Si type-II Heterojunction for self-powered broadband photodetector with response up to mid-infrared [J]. ACS Photonics, 2019, 6(2): 565-572. doi:  10.1021/acsphotonics.8b01675
[163] Cong H, Xue C, Zheng J, et al. Silicon based GeSn p-i-n photodetector for SWIR detection [J]. IEEE Photonics Journal, 2016, 8(5): 1-6.
[164] Tran H, Pham T, Margetis J, et al. Si-based GeSn photodetectors toward mid-infrared imaging applications [J]. ACS Photonics, 2019, 6(11): 2807-2815. doi:  10.1021/acsphotonics.9b00845
[165] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors [J]. Nature Photonics, 2013, 7(11): 888-891. doi:  10.1038/nphoton.2013.241
[166] Qu Z, Nedeljkovic M, Wu Y, et al. Waveguide integrated graphene mid-infrared photodetector[C]//SPIE, 2018: 10537.
[167] Huang L, Dong B, Guo X, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications [J]. ACS Nano, 2019, 13(1): 913-921. doi:  10.1021/acsnano.8b08758