[1] Lipson H, Kurman M. Fabricated: The New World of 3D Printing[M]. USA: John Wiley & Sons, 2013.
[2] Chua C, Leong K. 3D Printing and Additive Manufacturing: Principles and Applications[M]. Singapore: World Scientific Publishing Co Pte Ltd, 2017.
[3] Vaezi M, Seitz H, Yang S. Erratum to: A review on 3D micro-additive manufacturing technologies [J]. Advanced Manufacturing Technology, 2013, 67: 1957. doi:  10.1007/s00170-013-4962-5
[4] Kotz F, Arnold K, Bauer W, et al. Three-dimensional printing of transparent fused silica glass [J]. Nature, 2017, 544: 337-339. doi:  10.1038/nature22061
[5] Parra-Cabrera C, Achille C, Kuhn S, et al. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors [J]. Chemical Society Reviews, 2018, 47(1): 209-230. doi:  10.1039/C7CS00631D
[6] Kotikian A, Truby R, Boley J, et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order [J]. Advanced Materials, 2018, 30(10): 170616.
[7] Lind J, Busbee T, Valentine A, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing [J]. Nature Materials, 2017, 16(3): 303-308. doi:  10.1038/nmat4782
[8] Hwang H, Zhu W, Victorine G, et al. 3D-printing of functional biomedical microdevices via light- and extrusion-based approaches [J]. Small Methods, 2018, 2(2): 1700277. doi:  10.1002/smtd.201700277
[9] Ishikawa A, Kato T, Takeyasu N, et al. Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials [J]. Applied Physics Letters, 2017, 111(18): 183102. doi:  10.1063/1.4986203
[10] Bernasconi R, Credi C, Tironi M, et al. Electroless metallization of stereolithographic photocurable resins for 3D printing of functional microdevices [J]. Journal of The Electrochemical Society, 2017, 164(5): B3059-B3066. doi:  10.1149/2.0081705jes
[11] Bernasconi R, Cuneo F, Carrara E, et al. Hard-magnetic cell microscaffolds from electroless coated 3D printed architectures [J]. Materials Horizons, 2018, 5(4): 699-707. doi:  10.1039/C8MH00206A
[12] Huang K M, Tsai S C, Lee Y K, et al. Selective metallic coating of 3D-printed microstructures on flexible substrates [J]. RSC Advances, 2017, 7(81): 51663-51669. doi:  10.1039/C7RA11171A
[13] Hill R T, Lyon J L, Allen R, et al. Microfabrication of three-dimensional bioelectronic architectures [J]. Journal of America Chemical Society, 2005, 127(30): 10707-10711. doi:  10.1021/ja052211f
[14] Farrer R A, LaFratta C N, Li L, et al. Selective functionalization of 3-D polymer microstructures [J]. America Chemical Society, 2006, 128(6): 1796-1797. doi:  10.1021/ja0583620
[15] Formanek F, Takeyasu N, Tanaka T, et al. Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures [J]. Applied Physics Letters, 2006, 88: 083110. doi:  10.1063/1.2178261
[16] Chen Y S, Tal A, Torrance D B, et al. Fabrication and characterization of three-dimensional silver-coated polymeric microstructures [J]. Advanced Functional Materials, 2006, 16(13): 1739-1744. doi:  10.1002/adfm.200600394
[17] Mukai K, Yoshimura T, Maruo S. Micromolding of three-dimensional metal structures by electroless plating of photopolymerized resin [J]. Japanese Journal of Applied Physics, 2007, 46(4B): 2761-2763. doi:  10.1143/JJAP.46.2761
[18] Hirt L, Reiser A, Spolenak R, et al. Additive manufacturing of metal structures at the micrometer scale [J]. Advanced Materials, 2017, 29(17): 1604211. doi:  10.1002/adma.201604211
[19] Reiser A, Koch L, Dunn K A, et al. Metals by micro-scale additive manufacturing: Comparison of microstructure and mechanical properties [J]. Advanced Functional Materials, 2020, 30(28): 1910491. doi:  10.1002/adfm.201910491
[20] Zheng Z, Lee H, Weisgraber T H, et al. Ultra-light, ultra-stiff mechanical metamaterials [J]. Science, 2014, 344: 1373-1377. doi:  10.1126/science.1252291
[21] Campo A, Arzt E. Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces [J]. Chemical Reviews, 2008, 108(3): 911-9459. doi:  10.1021/cr050018y
[22] Verschuuren M A, Sprang H A, Polman A. Large-area nanopatterns: improving LEDs, lasers, and photovoltaics [J]. Nanotechnology, 2011, 22: 505201. doi:  10.1088/0957-4484/22/50/505201
[23] Mosadegh B, Xiong G, Dunham S, et al. Current progress in 3D printing for cardiovascular tissue engineering [J]. Biomedical Materials, 2015, 10(3): 034002. doi:  10.1088/1748-6041/10/3/034002
[24] Stanton M M, Trichet-Paredes C, Sanchez S. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics [J]. Lab on a Chip, 2015, 15: 1634-1637. doi:  10.1039/C5LC90019K
[25] Chen H T, Padilla W J, Zide J M, et al. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597-600. doi:  10.1038/nature05343
[26] Wang Q, Rogers E T, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials [J]. Nature Photonics, 2016, 10(1): 60-65. doi:  10.1038/nphoton.2015.247
[27] Sun Q, Ueno K, Yu H, et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy [J]. Light: Science & Applications, 2013, 2: e118.
[28] Zhu C, Du D, Eychmuller A, et al. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry [J]. Chemical Reviews, 2015, 115(16): 8896-8943. doi:  10.1021/acs.chemrev.5b00255
[29] Bohandy J, Kim B F, Adrian F J. Metal deposition from a supported metal film using an excimer laser [J]. Journal of Applied Physics, 1986, 60(4): 1538. doi:  10.1063/1.337287
[30] Matthias F, Ralph P, Ton B, et al. Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films [J]. Additive Manufacturing, 2018, 24: 391-399. doi:  10.1016/j.addma.2018.09.028
[31] Röder T C, Köhler J R. Physical model for the laser induced forward transfer process [J]. Applied Physics Letters, 2012, 100(7): 71603. doi:  10.1063/1.3685469
[32] Kuznetsov A I, Kiyan R, Chichkov B N. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays [J]. Optics Express, 2010, 18(20): 21198-21203. doi:  10.1364/OE.18.021198
[33] Zenou M, Kotler Z. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures [J]. Scientific Reports, 2015, 5(17): 17265.
[34] Visser C W, Pohl R, Sun C. Toward 3D printing of pure metals by laser-induced forward transfer [J]. Advanced Materials, 2015, 27(27): 4087-4092. doi:  10.1002/adma.201501058
[35] Zenou M, Sa’ar A, Kotler Z. Laser transfer of metals and metal alloys for digital microfabrication of 3D objects [J]. Small, 2015, 11(33): 4082-4089. doi:  10.1002/smll.201500612
[36] Zenou M, Sa’ar A, Kotler Z. Digital laser printing of aluminum micro-structure on thermally sensitive substrates [J]. Journal of Physics D: Applied Physics, 2015, 48(20): 205303. doi:  10.1088/0022-3727/48/20/205303
[37] Winter S, Zenou M, Kotler Z. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell [J]. Journal of Physics D: Applied Physics, 2016, 49: 165310. doi:  10.1088/0022-3727/49/16/165310
[38] Huis in't Veld B, Overmeyer L, Schmidt M, Wegener K, Malshe A, Bartolo P. Si/Ge micro additive manufacturing using ultra-short laser pulses [J]. CIRP Annals—Manufacturing Technology, 2015, 64(2): 701-724. doi:  10.1016/j.cirp.2015.05.007
[39] Zenou M, Kotler Z. Printing of metallic 3D micro-objects by laser induced forward transfer [J]. Optics Express, 2016, 24(2): 1431-1446. doi:  10.1364/OE.24.001431
[40] Piqué A, Auyeung R C Y, Kim H. Laser 3D micro-manufacturing [J]. Journal of Physics D: Applied Physics, 2016, 49(22): 223001. doi:  10.1088/0022-3727/49/22/223001
[41] Breckenfeld E, Kim H, Auyeung R C Y, et al. Laser-induced forward transfer of silver nanopaste for microwave interconnects [J]. Applied Surface Science, 2015, 331(15): 254-261.
[42] Wang J, Auyeung R C Y, Kim H, et al. Three-dimensional printing of interconnects by laser direct-write of silver nanopastes [J]. Advanced Materials, 2010, 22(40): 4462-4466. doi:  10.1002/adma.201001729
[43] Piqué A, Auyeung R C Y, Kim H, et al. Digital microfabrication by laser decal transfer [J]. Journal of Laser Micro/Nanoengineering, 2008, 3(3): 163-168. doi:  10.2961/jlmn.2008.03.0007
[44] Mathews S A, Auyeung R C Y, Kim H, et al. High-speed video study of laser-induced forward transfer of silver nano-suspensions [J]. Journal of Applied Physics, 2013, 114(6): 64910. doi:  10.1063/1.4817494
[45] Zenou M, Sa’ar A, Kotler Z. Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties [J]. Nanotechnology, 2016, 27(1): 15203. doi:  10.1088/0957-4484/27/1/015203
[46] Stellacci F, Bauer C A, Meyer-Friedrichsen T, et al. Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning [J]. Advanced Materials, 2002, 14(3): 194-198. doi:  10.1002/1521-4095(20020205)14:3<194::AID-ADMA194>3.0.CO;2-W
[47] Maruo S, Saeki T. Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix [J]. Optics Express, 2008, 16(2): 1174-1179. doi:  10.1364/OE.16.001174
[48] Ishikawa A, Tanaka T, Kawata S. Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye [J]. Applied Physics Letters, 2006, 89(11): 113102. doi:  10.1063/1.2345601
[49] Tanaka T, Ishikawa A, Kawata S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure [J]. Applied Physics Letters, 2006, 88(8): 081107. doi:  10.1063/1.2177636
[50] Xu B B, Zhang D D, Liu X L, et al. Fabrication of microelectrodes based on precursor doped with metal seeds by femtosecond laser direct writing [J]. Optics Letters, 2014, 39(3): 434-437. doi:  10.1364/OL.39.000434
[51] Xu B B, Xia H, Niu L G, et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating [J]. Small, 2010, 6(16): 1762-1766. doi:  10.1002/smll.201000511
[52] Cao Y, Takeyasu N, Tanaka T, et al. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction [J]. Small, 2009, 5(10): 1144-1148.
[53] Tanaka T, Ishikawa A, Amemiya T. Three-dimensional two-photon laser fabrication for metals, polymers, and magneto-optical materials[C]//Photonics West, 2015: 9353-21.
[54] Lu W E, Zhang Y L, Zheng M L, et al. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction [J]. Optical Materials Express, 2013, 3(10): 1660-1673. doi:  10.1364/OME.3.001660
[55] Blasco E, Müller J, Müller P, et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing [J]. Advanced Materials, 2016, 28(18): 3592-3595. doi:  10.1002/adma.201506126
[56] Vyatskikh A, Delalande S, Kudo A, et al. Additive manufacturing of 3D nano-architected metals [J]. Nature Communications, 2018, 9(1): 593. doi:  10.1038/s41467-018-03071-9
[57] Focsan M, Craciun A M, Astilean S, et al. Two-photon fabrication of three-dimensional silver microstructures in microfluidic channels for volumetric surface-enhanced Raman scattering detection [J]. Optical Materials Express, 2016, 6(5): 1587-1593. doi:  10.1364/OME.6.001587
[58] Exner H, Regenfuss P, Hartwig L, et al. Selective laser micro sintering with a novel process[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5063(1): 145-151.
[59] 柯林达. 脉冲激光微烧结金属粉末的关键技术研究[D]. 武汉: 华中科技大学, 2014.

Ke Linda. The key technologies of laser micro sintering metal powder by pulsed laser[D]. Wuhan: Huazhong University of Science & Technology, 2014 (in Chinese)
[60]

Promoppatum P, Onler R, Yao S C, et al. Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products [J]. Journal of Materials Processing Technology, 2017, 240: 262-273. doi:  10.1016/j.jmatprotec.2016.10.005
[61] 兰红波, 李涤尘, 卢秉恒. 微纳尺度 3D 打印[J]. 中国科学: 技术科学, 2015, 45(9): 919-940.

Lan Hongbo, Li Dichen, Lu Bingheng. Micro-and nanoscale 3D printing [J]. Sci Sin Tech, 2015, 45(9): 919-940. (in Chinese)
[62]

Regenfuss P, Streek A, Hartwig L, et al. Principles of laser micro sintering [J]. Rapid Prototyping Journal, 2007, 13(4): 204-212. doi:  10.1108/13552540710776151
[63]

Regenfuß P, Ebert R. Exner H. Laser micro sintering-a versatile instrument for the generation of microparts [J]. Laser Technik Journal, 2007, 4(1): 26-31. doi:  10.1002/latj.200790139
[64]

Exner H, Horn M, Streek A, et al. Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder [J]. Virtual and Physical Prototyping, 2008, 3(1): 3-11. doi:  10.1080/17452750801907970
[65]

Subramanian K, Vail N, Barlow J, et al. Selective laser sintering of alumina with polymer binders [J]. Rapid Prototyping Journal, 1995, 1(2): 24-35. doi:  10.1108/13552549510086844
[66]

Chen J M, Wang X B, Zuo T C. The micro fabrication using selective laser sintering micron metal powder[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5116: 647~651.
[67]

Regenfuss P, Hartwig L, Klotzer S, et al. Microparts by a novel modification of selective laser sintering[C]//Rapid Prototyping and Manufacturing Conference, 2004: 1-7.
[68]

Kathuria Y P. Microstructuring by selective laser sintering of metallic powder [J]. Surface and coatings technology, 1999, 116-119: 643-647. doi:  10.1016/S0257-8972(99)00266-2
[69]

Ebert R, Regenfuss P, Klotzer S, et al. Process assembly for μm-scale SLS, reaction sintering, and CVD[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5063: 183-188.
[70] 何飞, 程亚. 飞秒激光微加工: 激光精密加工领域的新前沿[J]. 中国激光, 2007, 34(5): 595-620. doi:  10.3321/j.issn:0258-7025.2007.05.001

He Fei, Cheng Ya. Femtosecond laser micromachining: Frontier in laser precision micromachining [J]. Chinese Journal of Lasers, 2007, 34(5): 595-620. (in Chinese) doi:  10.3321/j.issn:0258-7025.2007.05.001
[71]

Lourtioz J M. Photonic crystals writing 3D photonic structures with light [J]. Nature Materials, 2004, 3(7): 427-428. doi:  10.1038/nmat1167
[72]

Maruo S, Fourkas J T. Recent progress in multiphoton microfabrication [J]. Laser Photonics Reviews, 2008, 2(1): 100-111.
[73]

Hsieh T M, Ng C W, Narayanan K, et al. Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography [J]. Biomaterials, 2010, 31(30): 7648-7652. doi:  10.1016/j.biomaterials.2010.06.029
[74]

Gittard S D, Narayan R J. Laser direct writing of micro- and nano-scale medical devices [J]. Expert Revies of Medical Devices, 2010, 7(3): 343-356. doi:  10.1586/erd.10.14
[75]

Liao C Z, Wuethrich A, Trau M. A material odyssey for 3D nano/microstructures: two photon polymerization-based nanolithography in bioapplications [J]. Applied Materials Today, 2020, 19(10): 100635.
[76]

Ma Z C, Zhang Y L, Han B, et al. Femtosecond-laser direct writing of metallic micro/ nanostructures: from fabrication strategies to future applications [J]. Small Methods, 2018, 2(7): 1700413. doi:  10.1002/smtd.201700413
[77]

Tottori S, Zhang L, Qiu F, et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport [J]. Advanced Materials, 2012, 24: 811-816. doi:  10.1002/adma.201103818
[78]

Waller E H, Dix S, Gutsche J, et al. Functional metallic microcomponents via liquid-phase multiphoton direct laser writing: a review [J]. Micromachines, 2019, 10(12): 827. doi:  10.3390/mi10120827
[79]

Kim S, Qiu F, Kim S, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation [J]. Advanced Materials, 2013, 25(41): 5863-5868. doi:  10.1002/adma.201301484
[80]

Huang T Y, Sakar M S, Mao A, et al. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents [J]. Advanced Materials, 2015, 27(42): 6644-6650. doi:  10.1002/adma.201503095
[81]

Iwata F, Metoki J. Microelectrophoresis deposition using a nanopipette for three-dimensional structures[C]//IEEE, 2014: 304-307.
[82]

Takai T, Nakao H, Iwata F. Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique [J]. Optics Express, 2014, 22(23): 28109-28117. doi:  10.1364/OE.22.028109
[83]

Iwata F, Kaji M, Suzuki A, et al. Local electrophoresis deposition of nanomaterials assisted by a laser trapping technique [J]. Nanotechnology, 2009, 20(23): 235303. doi:  10.1088/0957-4484/20/23/235303
[84]

Matsuura T, Takai T, Iwata F. Local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator for three-dimensional microfabrication [J]. Japanese Journal of Applied Physics, 2017, 56(10): 105502. doi:  10.7567/JJAP.56.105502
[85]

Iwata F, Metoki J. Local electrophoretic deposition using a nanopipette for micropillar fabrication [J]. Japanese Journal of Applied Physics, 2017, 56(12): 126701. doi:  10.7567/JJAP.56.126701
[86]

Kaschke J, Wegener M. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography [J]. Optics Letters, 2015, 40(17): 3986-3989. doi:  10.1364/OL.40.003986
[87]

Kaneko K, Yamamoto K, Kawata S, et al. Metal-nanoshelled three-dimensional photonic lattices, [J]. Optics Letters, 2008, 33(17): 1999. doi:  10.1364/OL.33.001999
[88]

Malureanu R, Alabastri A, Cheng W, et al. Enhanced broadband optical transmission in metallized woodpiles [J]. Applied Physics A, 2010, 103: 749-753.
[89]

Li j, Hossain M D M, Jia B. Three-dimensional hybrid photonic crystals merged with localized plasmon resonances [J]. Optics Express, 2010, 18(5): 4491. doi:  10.1364/OE.18.004491
[90]

Radke A, Gissibl T, Klotzbucher T, et al. Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating [J]. Advanced Materials, 2011, 23(27): 3018-3021. doi:  10.1002/adma.201100543
[91]

Tottori S, Zhang L, Peyer K E, et al. Assembly, disassembly, and anomalous propulsion of microscopic helices [J]. Nano Letters, 2013, 13(9): 4263-4268. doi:  10.1021/nl402031t
[92]

Kulinowski K M, Jiang P, Vaswani H, et al. Porous metals from colloidal templates [J]. Advanced Materials, 2000, 12(11): 833-838. doi:  10.1002/(SICI)1521-4095(200006)12:11<833::AID-ADMA833>3.0.CO;2-X
[93]

Nagpal P, Han S E, Stein A, et al. Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals [J]. Nano Letters, 2008, 8(10): 3238-3243. doi:  10.1021/nl801571z
[94]

Walsh T A, Bur J A, Kim J S, et al. High-temperature metal coating for modification of photonic band edge position [J]. Journal of the Optical Society of America B, 2009, 26: 1450-1455. doi:  10.1364/JOSAB.26.001450
[95]

Mizeikis V, Juodkazis S, Tarozaite R, et al. Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region [J]. Optics Express, 2007, 15(13): 8454-8456. doi:  10.1364/OE.15.008454
[96]

Marago O M, Jones P H, Gucciardi P G, et al. Optical trapping and manipulation of nanostructures [J]. Nature Nanotechnol, 2013, 8(11): 807-819. doi:  10.1038/nnano.2013.208
[97]

Daly M, Sergides M, Chormaic S N. Optical trapping and manipulation of micrometer and submicrometer particles [J]. Laser Photonics Reviews, 2015, 9: 309-329. doi:  10.1002/lpor.201500006
[98]

Gu M, Bao H, Gan X, et al. Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy [J]. Light: Science & Applications, 2014, 3: e126.
[99]

Lehmuskero A, Johansson P, Rubinsztein-Dunlop H. Laser trapping of colloidal metal nanoparticles [J]. ACS Nano, 2015, 9(4): 3453-3469. doi:  10.1021/acsnano.5b00286
[100]

Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters, 1986, 11(5): 288-290. doi:  10.1364/OL.11.000288
[101]

Dholakia K, Reece P. Optical micromanipulation takes hold [J]. Nano Today, 2006, 1(1): 18-27. doi:  10.1016/S1748-0132(06)70019-6
[102]

Grier D G. Grier, A revolution in optical manipulation [J]. Nature, 2003, 424: 810-816. doi:  10.1038/nature01935
[103]

Wang H, Liu S, Zhang Y L, et al. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing [J]. Advanced Materials, 2015, 16(2): 024805.
[104]

Xu B B, Zhang R, Wang H, et al. Laser patterning of conductive gold micronanostructures from nanodots [J]. Nanoscale, 2012, 4(22): 6955. doi:  10.1039/c2nr31614e
[105]

Xu J, Li X, Zhong Y, et al. Glass-channel molding assisted 3D printing of metallic microstructures enabled by femtosecond laser internal processing and microfluidic electroless plating [J]. Advanced Materials Technologies, 2018, 3(12): 1800372. doi:  10.1002/admt.201800372
[106]

Kondo Y, Qiu J, Mitsuyu T, et al. Three-dimensional microdrilling of glass by multiphoton process and chemical etching [J]. Japanese Journal Applied Physics, 1999, 38(2): L1146.
[107]

Ius A M, Juodkazis S, Watanabe M, et al. Femtosecond laser-assisted three-dimensional microfabrication in silica [J]. Optics Letters, 2001, 26(5): 277-279. doi:  10.1364/OL.26.000277
[108]

Masuda M, Sugioka K, Cheng Y, et al. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation [J]. Applied Physics A, 2003, 76(5): 857-860. doi:  10.1007/s00339-002-1937-z
[109]

Bellouard Y, Said A, Dugan M, et al. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching [J]. Optics Express, 2004, 12(10): 2120-2129. doi:  10.1364/OPEX.12.002120
[110]

Itoh K, Watanabe W, Nolte S. Ultrafast processes for bulk modification of transparent materials [J]. MRS Bulletin, 2006, 31(8): 620-625. doi:  10.1557/mrs2006.159
[111]

Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials [J]. Nature Photonics, 2008, 2(4): 219-225. doi:  10.1038/nphoton.2008.47
[112]

Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing [J]. Light: Science & Applications, 2014, 3(4): e149-e149.
[113]

Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication [J]. Applied Physics Reviews, 2014, 1(4): 041303. doi:  10.1063/1.4904320
[114]

Madani-Grasset F, Bellouard Y. Femtosecond laser micromachining of fused silica molds [J]. Optics Express, 2010, 18(21): 21826-21840. doi:  10.1364/OE.18.021826
[115]

Schaap A, Bellouard Y. Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass [J]. Optical Materials Express, 2013, 3(9): 1428-1437. doi:  10.1364/OME.3.001428
[116]

Tovar M, Weber T, Hengoju S, et al. 3D-glass molds for facile production of complex droplet microfluidic chips [J]. Biomicrofluidics, 2018, 12(2): 024115. doi:  10.1063/1.5013325
[117]

Wang P, Chu W, Li W, et al. Three-dimensional laser printing of macro-scale glass objects at a micro-scale resolution [J]. Micromachines, 2019, 10(9): 565. doi:  10.3390/mi10090565
[118]

Goluch E D, Shaikh K A, Ryu K, et al. Microfluidic method for in-situ deposition and precision patterning of thin-film metals on curved surfaces [J]. Applied Physics Letters, 2004, 85(16): 3629-3631. doi:  10.1063/1.1808872
[119]

Lang P, Neiß S, Woias P. Fabrication of three-dimensional freestanding metal micropipes for microfluidics and microreaction technology [J]. Journal of Micromechanics and Microengineering, 2011, 21(12): 125024. doi:  10.1088/0960-1317/21/12/125024
[120]

Muench F, Oezaslan M, Svoboda I, et al. Electroless plating of ultrathin palladium films: self-initiated deposition and application in microreactor fabrication [J]. Materials Research Express, 2015, 2(10): 105010. doi:  10.1088/2053-1591/2/10/105010