[1] Nishizawa T, Sugimoto N, Matsui I, et al. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 188: 79-93.
[2] Mei L, Brydegaard M. Continuous-wave differential absorption lidar [J]. Laser & Photonics Reviews, 2015, 9(6): 629-636.
[3] Brydegaard M, Gebru A, Svanberg S. Super resolution laser radar with blinking atmospheric particles-application to interacting flying insects [J]. Progress in Electromagnetics Research-Pier, 2014, 147: 141-151. doi:  10.2528/PIER14101001
[4] Mei L, Guan P, Yang Y, et al. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-Scattering Scheimpflug lidar technique [J]. Optics Express, 2017, 25(16): A628-A638. doi:  10.1364/OE.25.00A628
[5] Mei L, Brydegaard M. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system [J]. Optics Express, 2015, 23(24): 1613-1628. doi:  10.1364/OE.23.0A1613
[6] Mei L, Zhang L S, Kong Z, et al. Noise modeling, evaluation and reduction for the atmospheric lidar technique employing an image sensor [J]. Optics Communications, 2018, 426: 463-470. doi:  10.1016/j.optcom.2018.05.072
[7] Liu Z F, Yang C G, Gong Z F, et al. Adaptive digital filter for the processing of atmospheric lidar signals measured by imaging lidar techniques [J]. Applied Optics, 2020, 59(30): 9454-9463. doi:  10.1364/AO.405049
[8] Mei L, Ma T, Kong Z, et al. Comparison studies of the Scheimpflug lidar technique and the pulsed lidar technique for atmospheric aerosol sensing [J]. Applied Optics, 2019, 58(32): 8981-8992. doi:  10.1364/AO.58.008981
[9] Mei L, Ma T, Zhang Z, et al. Experimental calibration of the overlap factor for the pulsed atmospheric lidar by employing a collocated Scheimpflug idar [J]. Remote Sensing, 2020, 12(7): 1227. doi:  10.3390/rs12071227
[10] Kong Z, Ma T, Chen K, et al. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols [J]. Applied Optics, 2019, 58(31): 8612-8621. doi:  10.1364/AO.58.008612
[11] Liu Z, Li L M, Li H, et al. Preliminary studies on atmospheric monitoring by employing a portable unmanned Mie-scattering Scheimpflug lidar system [J]. Remote Sensing, 2019, 11(7): 1-15.
[12] Mei L, Kong Z, Ma T. Dual-wavelength Mie-scattering Scheimpflug lidar system developed for the studies of the aerosol extinction coefficient and the angstrom exponent [J]. Optics Express, 2018, 26(24): 31942-31956. doi:  10.1364/OE.26.031942
[13] Kong Z, Ma T, Cheng Y, et al. Feasibility investigation of a monostatic imaging lidar with a parallel-placed image sensor for atmospheric remote sensing [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254: 107212. doi:  10.1016/j.jqsrt.2020.107212
[14] Mei L, Brydegaard M. Atmospheric aerosol monitoring by an elastic scheimpflug lidar system [J]. Optics Express, 2015, 23(24): 247841.
[15] Mei L, Kong Z, Guan P. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies [J]. Optics Express, 2018, 26(6): A260-A274. doi:  10.1364/OE.26.00A260
[16] Kong Z, Liu Z, Zhang L S, et al. Atmospheric pollution monitoring in urban area by employing a 450 nm lidar system [J]. Sensors, 2018, 18(6): 1-12. doi:  10.1109/JSEN.2018.2792888
[17] Kong Z, Guan P, Mei L. A green-band scheimpflug lidar system-feasibility studies for atmospheric remote sensing[C]// Optical Sensing and Imaging Technologies and Applications, 2018, 10846: 1-6.
[18] Sun G D, Qin L A, Hou Z H, et al. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection [J]. Optics Express, 2018, 26(6): 7423-7436. doi:  10.1364/OE.26.007423
[19] Mei L, Li Y C, Kong Z, et al. Mini-Scheimpflug lidar system for all-day atmospheric remote sensing in the boundary layer [J]. Applied Optics, 2020, 59(22): 6729-6736. doi:  10.1364/AO.396057
[20] Mei L, Guan P. Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme [J]. Optics Letters, 2017, 42(18): 3562-3565. doi:  10.1364/OL.42.003562
[21] Kong Z, Ma T, Cheng Y, et al. A calibration-free polarization imaging lidar developed for atmospheric remote sensing [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020: under review.
[22] Kong Z, Yin Z, Cheng Y, et al. Modeling and evaluation of the systematic errors for the polarization-sensitive imaging lidar technique [J]. Remote Sensing, 2020, 12(20): 3309. doi:  10.3390/rs12203309
[23] Neely R R, Hayman M, Stillwell R, et al. Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation [J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8): 1635-1655. doi:  10.1175/JTECH-D-12-00101.1
[24] Mei L, Li L M, Liu Z, et al. Detection of the planetary boundary layer height by employing the Scheimpflug lidar technique and the covariance wavelet transform method [J]. Applied Optics, 2019, 58(29): 8013-8020. doi:  10.1364/AO.58.008013
[25] Zhao G Y, Malmqvist E, Torok S, et al. Particle profiling and classification by a dual-band continuous-wave lidar system [J]. Applied Optics, 2018, 57(35): 10164-10171. doi:  10.1364/AO.57.010164
[26] Zhang Y Y, Wang J, Bu L B. Analysis of a haze event over Nanjing, China based on multi-source data [J]. Atmosphere, 2019, 10(6): 1-17.
[27] Muller D, Ansmann A, Mattis I, et al. Aerosol-type-dependent lidar ratios observed with Raman lidar [J]. Journal of Geophysical Research-Atmospheres, 2007, 112(D16): 1-11.
[28] Sullivan J T, McGee T J, Sumnicht G K, et al. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, Dc Region [J]. Atmospheric Measurement Techniques, 2014, 7(10): 3529-3548. doi:  10.5194/amt-7-3529-2014
[29] Beniston M, Wolf J P, Benistonrebetez M, et al. Use of lidar measurements and numerical-models in air-pollution research [J]. Journal of Geophysical Research-Atmospheres, 1990, 95(D7): 9879-9894. doi:  10.1029/JD095iD07p09879
[30] Fukuchi T, Nayuki T, Cao N W, et al. Differential absorption lidar system for simultaneous measurement of O-3 and NO2: System development and measurement error estimation [J]. Optical Engineering, 2003, 42(1): 98-104. doi:  10.1117/1.1525274
[31] Guan Z G, Lundin P, Mei L, et al. Vertical lidar sounding of atomic mercury and nitric oxide in a major Chinese city [J]. Appl Phys B, 2010, 101(1-2): 465-470. doi:  10.1007/s00340-010-4166-8
[32] Mei L, Zhao G Y, Svanberg S. Differential absorption lidar system employed for background atomic mercury vertical profiling in South China [J]. Optics and Lasers in Engineering, 2014, 55(1): 128-135.
[33] Hu S, Hu H, Zhang Y, et al. A new differential absorption lidar for NO2 measurements using Raman-shifted technique [J]. Chinese Optics Letters, 2003, 1(8): 435.
[34] Fan G, Zhang T, Fu Y, et al. Temporal and spatial distribution characteristics of ozone based on differential absorption lidar in Beijing [J]. Chinese Journal of Lasers, 2014, 41(10): 1014003. (in Chinese) doi:  10.3788/CJL201441.1014003
[35] Gong W, Ma X, Han G, et al. Method for wavelength stabilization of pulsed difference frequency laser at 1572 Nm for Co2 detection lidar [J]. Optics Express, 2015, 23(5): 6151-6170. doi:  10.1364/OE.23.006151
[36] Liu H, Chen T, Shu R, et al. Wavelength-locking-free 1.57 μm differential absorption lidar for CO2 Sensing [J]. Optics Express, 2014, 22(22): 27675-27680. doi:  10.1364/OE.22.027675
[37] Mei L, Guan P, Kong Z. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique [J]. Optics Express, 2017, 25(20): A953-A962. doi:  10.1364/OE.25.00A953
[38] Cheng Y, Zhang Z, Kong Z, et al. Evaluation of systematic errors for the continuous-wave NO2 differential absorption lidar employing a multimode laser diode [J]. Applied Optics, 2020, 59(29): 9087-9097. doi:  10.1364/AO.403659
[39] Larsson J, Bood J, Xu C T, et al. Atmospheric CO2 Sensing using Scheimpflug-lidar based on a 1.57-Mu M fiber source [J]. Optics Express, 2019, 27(12): 17348-17358. doi:  10.1364/OE.27.017348
[40] Gao F, Lin H Z, Chen K, et al. Light-sheet based two-dimensional Scheimpflug lidar system for profile measurements [J]. Optics Express, 2018, 26(21): 27179-27188. doi:  10.1364/OE.26.027179
[41] Chen K, Gao F, Chen X, et al. Overwater light-sheet Scheimpflug lidar system for an underwater three-dimensional profile bathymetry [J]. Applied Optics, 2019, 58(27): 7643-7648. doi:  10.1364/AO.58.007643
[42] Zhao G Y, Ljungholm M, Malmqvist E, et al. Inelastic hyperspectral lidar for profiling aquatic ecosystems [J]. Laser & Photonics Reviews, 2016, 10(5): 807-813.
[43] Gao F, Li J W, Lin H Z, et al. Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system [J]. Optics Express, 2017, 25(21): 25515-25522. doi:  10.1364/OE.25.025515
[44] Duan Z, Yuan Y, Lu J C, et al. Underwater spatially, spectrally, and temporally resolved optical monitoring of aquatic fauna [J]. Optics Express, 2020, 28(2): 2600-2610. doi:  10.1364/OE.383061
[45] Yang J, Sun J, Du L, et al. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice [J]. Optics Express, 2017, 25(4): 3743-3755. doi:  10.1364/OE.25.003743
[46] Wang X, Duan Z, Brydegaard M, et al. Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system [J]. Applied Physics B-Lasers and Optics, 2018, 124(11): 1-5.
[47] Lin H Z, Zhang Y, Mei L. Fluorescence Scheimpflug lidar developed for the three-dimension profiling of plants [J]. Optics Express, 2020, 28(7): 9269-9279. doi:  10.1364/OE.389043
[48] Potts S G, Biesmeijer J C, Kremen C, et al. Global pollinator declines: Trends, impacts and drivers [J]. Trends in Ecology & Evolution, 2010, 25(6): 345-353.
[49] Lehane M J, The Biology of Blood-Sucking in Insects[M]. 2nd ed. Cambridge: Cambridge University Press, 2005.
[50] Murray C J L, Rosenfeld L C, Lim S S, et al. Global malaria mortality between 1980 and 2010: A systematic analysis [J]. Lancet, 2012, 379(9814): 413-431. doi:  10.1016/S0140-6736(12)60034-8
[51] Brydegaard M, Svanberg S. Photonic monitoring of atmospheric and aquatic fauna [J]. Laser & Photonics Reviews, 2018, 12(12): 1-28.
[52] Kirkeby C, Wellenreuther M, Brydegaard M. Observations of movement dynamics of flying insects using high resolution lidar [J]. Scientific Reports, 2016, 6: 1-11. doi:  10.1038/s41598-016-0001-8
[53] Brydegaard M, Malmqvist E, Jansson S, et al. The Scheimpflug Lidar Method[C]//Lidar Remote Sensing for Environmental Monitoring, 2017, 10406: 1-17.
[54] Jansson S, Malmqvist E, Brydegaard M, et al. A Scheimpflug lidar used to observe insect swarming at a wind turbine [J]. Ecological Indicators, 2020, 117: 1-7.
[55] Brydegaard M, Jansson S, Malmqvist E, et al. Lidar Reveals Activity Anomaly of Malaria Vectors During Pan-African Eclipse [J]. Science Advances, 2020, 6(20): 1-9.
[56] Zhu S, Malmqvist E, Li Y, et al. Insect remote sensing using a polarization sensitive CW lidar system in chinese rice fields[C]//EPJ Web of Conferences, 2018, 176: 07001.
[57] Malmqvist E, Jansson S, Zhu S M, et al. The bat-bird-bug battle: Daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug lidar [J]. Royal Society Open Science, 2018, 5(4): 1-12.
[58] Song Z W, Zhang B X, Feng H Q, et al. Application of lidar remote sensing of insects in agricultural entomology on the Chinese scene [J]. Journal of Applied Entomology, 2020, 144(3): 161-169. doi:  10.1111/jen.12714
[59] Zhu S M, Malmqvist E, Li W S, et al. Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive cw near-IR lidar system [J]. Applied Physics B-Lasers and Optics, 2017, 123(7): 1-11.
[60] Li B, Zhang D Y, Liu J X, et al. A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics [J]. Applied Sciences-Basel, 2019, 9(9): 1-25.
[61] Malmqvist E, Brydegaard M, Alden M, et al. Scheimpflug lidar for combustion diagnostics [J]. Optics Express, 2018, 26(12): 14842-14858. doi:  10.1364/OE.26.014842
[62] Malmqvist E, Borggren J, Alden M, et al. Lidar thermometry using two-line atomic fluorescence [J]. Applied Optics, 2019, 58(4): 1128-1133. doi:  10.1364/AO.58.001128
[63] Zhang Y, Zhang H, Wu S. Design of water Scheimpflug lidar technology used for measuring small angle backscattering [J]. Acta Optica Sinica, 2020, 40(11): 1101004. (in Chinese) doi:  10.3788/AOS202040.1101004