[1] Feng Xian, Poletti Francesco, Camerlingo Angela, et al. Optical fiber technology. Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths [J]. Optical Fiber Technology, 2010, 16(6): 378-391. doi:  10.1016/j.yofte.2010.09.014
[2] Huang T X, Yi Xiaoke, Minasian Robert. Single passband microwave photonic filter using continuous-time impulse response [J]. Optics Express, 2011, 19(7): 6231-6242. doi:  10.1364/OE.19.006231
[3] Chin Sanghoon, Thévenaz Luc, Sancho Juan, et al. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers [J]. Optics Express, 2010, 18(21): 22599-22613. doi:  10.1364/OE.18.022599
[4] Cao Z, Lu R, Wang Q, et al. Cyclic additional optical true time delay for microwave beam steering with spectral filtering [J]. Optics Letters, 2014, 39(12): 3402-3405. doi:  10.1364/OL.39.003402
[5] Thyagarajan K, Pal B P. Modeling dispersion in optical fibers: Applications to dispersion tailoring and dispersion compensation [J]. Journal of Optical, Reports Fiber Communications, 2007, 4(3): 173-213. doi:  10.1007/s10297-006-0076-2
[6] Jung Byung Min, Yao Jianping. A two-dimensional optical true time-delay beamformer consisting of a fiber Bragg grating prism and switch-based fiber-optic delay lines [J]. IEEE Photonics Technology Letters, 2009, 21(10): 627-629. doi:  10.1109/LPT.2009.2015275
[7] Jiang Lingjun, Huang Zhaoran. Integrated cascaded bragg gratings for on-chip optical delay lines [J]. IEEE Photonics Technology Letters, 2018, 30(5): 499-502. doi:  10.1109/LPT.2018.2801026
[8] Maselli Valeria, Grenier Jason R, Ho Stephen, et al. Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel [J]. Optics Express, 2009, 17(14): 11719-11729. doi:  10.1364/OE.17.011719
[9] Du Zhenmin, Xiang Chao, Fu Tingzhao, et al. Silicon nitride chirped spiral Bragg grating with large group delay [J]. APL Photonics, 2020, 5(10): 101302. doi:  10.1063/5.0022963
[10] Kuznetsov Mark, Haus H. Radiation loss in dielectric waveguide structures by the volume current method [J]. IEEE Journal of Quantum Electronics, 1983, 19(10): 1505-1514. doi:  10.1109/JQE.1983.1071758
[11] Baets R, Lagasse P E. Loss calculation and design of arbitrarily curved integrated-optic waveguides [J]. JOSA, 1983, 73(2): 177-182. doi:  10.1364/JOSA.73.000177
[12] Chung C J, Xu X, Wang G, et al. On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide [J]. Applied Physics Letters, 2018, 112(7): 071104. doi:  10.1063/1.5006188
[13] Giuntoni I, Stolarek D, Kroushkov D I, et al. Continuously tunable delay line based on SOI tapered Bragg gratings [J]. Optics Express, 2012, 20(10): 11241. doi:  10.1364/OE.20.011241
[14] Ishikura N, Hosoi R, Hayakawa R, et al. Photonic crystal tunable slow light device integrated with multi-heaters [J]. Applied Physics Letters, 2012, 100(22): 65.
[15] Lee H, Chen T, Li J, et al. Ultra-low-loss optical delay line on a silicon chip [J]. Nature Communications, 2012, 3(1): 1-7.
[16] Moreira R L, Garcia J W, Bauters Barton J S, et al. Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications [J]. Photonics Technology Letters, IEEE, 2013, 25(12): 1165-1168. doi:  10.1109/LPT.2013.2261807
[17] Morichetti F, Melloni A, Breda A, et al. A reconfigurable architecture for continuously variable optical slow-wave delay lines [J]. Optics Express, 2007, 15(25): 17273. doi:  10.1364/OE.15.017273
[18] Rasras M S, Madsen C K, Cappuzzo M A. Integrated resonance-enhanced variable optical delay lines [J]. IEEE Photonics Technology Letters, 2005, 17(4): 834-836. doi:  10.1109/LPT.2005.844009
[19] Shi W, Veerasubramanian V, Patel D, et al. Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings [J]. Optics Letters, 2014, 39(3): 701-703. doi:  10.1364/OL.39.000701
[20] Xie J, Zhou L, Zhi Z, et al. Continuously tunable reflective-type optical delay lines using microring resonators [J]. Optics Express, 2014, 22(1): 817-823. doi:  10.1364/OE.22.000817