[1] Wang Wei. Development of new inertial technology and its application in aerospace field [J]. Infrared and Laser Engineering, 2016, 45(3): 0301001. (in Chinese)
[2] Lefèvre H C. The fiber-optic gyroscope, a century after Sagnac’s experiment: The ultimate rotation-sensing technology? [J]. Comptes Rendus Physique, 2014, 15(10): 851-858. doi:  10.1016/j.crhy.2014.10.007
[3] Xue Lianli, Chen Shaochun, Chen Xiaozhen. Development and review of foreign inertial technology in 2017 [J]. Navigation and Control , 2018, 17(2): 1-9. (in Chinese)
[4] Qian Weizhu, Yang Libao. A fiber optic gyro error compensation method based on wavelet neural network [J]. Chinese Optics, 2018, 11(6): 1024-1031. (in Chinese) doi:  10.3788/co.20181106.1024
[5] Udd E, Pickrell G, Du H H, et al. Fiber optic gyro development at honeywell [C]//Fiber Optic Sensors and Applications XIII, 2016: 985201-985214.
[6] Deppe O, Dorner G, Konig S, et al. MEMS and FOG technologies for tactical and navigation grade inertial sensors-recent improvements and comparison [J]. Sensors, 2017, 17(3): 1-22.
[7] Udd E, Pickrell G, Du H H, et al. Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is! [C]//Fiber Optic Sensors and Applications XIII, 2016: 985201-985210.
[8] Wu Junwei, Miao Lingjuan, Li Fusheng, et al. Compensation method of FOG temperature drift with improved support vector machine [J]. Infrared and Laser Engineering , 2018, 47(5)-0522003. (in Chinese)
[9] Li Hongcai, Liu Chuntong, Zhao Xiaofeng, et al. Modeling and analysis of fiber optic gyroscope dynamic northfinding algorithm based on Simulink [J]. Infrared and Laser Engineering , 2018, 47(S1): 122001. (in Chinese)
[10] Liu Junhao, Li Ruichen. Analysis of thermal drift in high performance interferometric fiber-optic gyroscopes [J]. Chinese Optics, 2020, 13(2): 333-343. (in Chinese) doi:  10.3788/co.20201302.0333
[11] Logozinskii V N. Magnetically induced non-Faraday nonreciprocity in a fiber-optic gyroscope [J]. Journal of Communications Technology and Electronics, 2006, 51(7): 836-840. doi:  10.1134/S1064226906070175
[12] Toldi E D, Guattari F, Molucon C, et al. Understanding and control of the magnetic sensitivity of a fiber-optic gyroscope [C]//2016 DGON Intertial Sensors and Systems (ISS), 2016: 1-15.
[13] Cai Haoyuan, Li Wenkuan, Zhao Shenglin, et al. Gyro-compensated real-timeEKF magnetic field calibration method [J]. Optics and Precision Engineering , 2019, 27(12): 2650-2658. (in Chinese) doi:  10.3788/OPE.20192712.2650
[14] Zhou Y, Zhao Y, Tian H, et al. Theory and compensation method of axial magnetic error induced by axial magnetic field in a polarization-maintaining fiber optic gyro [J]. Optical Engineering , 2016, 55(12): 126101-126107.
[15] Mark J G, Tazartes D A, Amado C, et al. High efficiency magnetic shield for a fiber optic gyroscope: US, US5896199[P]. 1999-04-20.
[16] Chen Yaozhou, Wang Xiaxiao, Gao Yangyang, et al. Research on the influence mechanism of earth’s magnetic field on zero bias of high precision FOG [J]. Electronic Measurement Technology, 2016, 39(1): 147-150. (in Chinese)
[17] Tian Hui, Liang Cui, Zhang Dengwei. Magnetic shielding technique for high-precision FOGs [J]. Transducer and Microsystem Technologies, 2019, 38(7): 61-63. (in Chinese)
[18] Hotate K, Tabe K. Drift of an optical fiber gyroscope caused by the faraday effect: influence of the earth’s magnetic field [J]. Applied Optics , 1986, 25(7): 1086-1092. doi:  10.1364/AO.25.001086
[19] Li Jintao, Fang Jiancheng. Magnetic shielding method and experiment study of inertial measurement unit based on high precision fiber-optic gyro-scope [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 2106-2116. (in Chinese)
[20] Lv Xiaoqin, Huang Xinyan, Gao Feng, et al. Influence of air pressure variation on FOG bias stability and its improvement [J]. Journal of Chinese Inertial Technology , 2015, 23(3): 399-401, 408. (in Chinese)