[1] Knobelspiesse K, Cairns B, Mishchenko M, et al. Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs [J]. Optics Express, 2012, 20(19): 21457-21484.
[2]
[3] Maignan F, Bron F-M, Fdle E, et al. Polarized reflectances of natural surfaces: spaceborne measurements and analytical modeling [J]. Remote Sensing of Environment, 2009, 113: 2642-2650.
[4]
[5]
[6] Wang Yi, Hong Jin, Yang Weifeng, et al. Light resource of on-board calibration for multi-angle polarized radiometer [J]. Infrared and Laser Engineering, 2011, 40(12): 2480-2483. (in Chinese)
[7] Cheng Minxi, He Zhenjiang, Huang Zuohua. Measurement and application of stokes parameters of polarized light [J]. Infrared and Laser Engineering, 2006, 35(S): 109-115. (in Chinese)
[8]
[9]
[10] Li Yubo, Zhang Peng, Zeng Yuxiao, et al. Remote sensing measurement by full-Stokes-vector based on opto-electronic modulator[J]. Infrared and Laser Engineering, 2010, 39(2): 335-345. (in Chinese)
[11] Sun Xiaobing, Qiao Yanli, Hong Jin. Review of polarization remote sensing techniques and applications in the visible and infrared[J]. Journal of Atmospheric and Enviromental Optics, 2010, 5(3): 175-189. (in Chinese)
[12]
[13] Li Yanghui, Shen Weidong, Luo Zhenyue, et al. Analysis of coating-induced polarization aberrations by Jones matrix[C]// Optical Interference Coatings, 2010: WC7.
[14]
[15] Daugherty B, Chipman R A. Low Polarization Microscope Objectives[M]. Bellingham: PIE, 2010.
[16]
[17]
[18] Cairns B, Mishchenko M, Maring H, et al. Accurate monitoring of terrestrial aerosols and total solar irradiance: the NASA Glory mission[C]//SPIE, 2010, 7826: 78260U.
[19]
[20] Mahler A-B, Diner D J, Chipman R A. Analysis of static and time-varying polarization errors in the multiangle spectropolarimetric imager[J]. Appl Opt, 2011, 50(14): 2080- 2087.
[21]
[22] Nee S-M F. Error analysis for Mueller matrix measurement[J]. J Opt Soc Am A, 2003, 20(8): 7.
[23]
[24] Macleod H A. Thin-film Optical Filters [M]. 4th ed. Boca Raton: CRC Press, 2010.
[25]
[26] Willey R R. Further guidance for broadband antireflection coating design[J]. Appl Opt, 2011, 50(9): C274-C278.
[27]
[28] Honciuc G, Singurel G. Antireflection optical coatings for the spectral range 400-700 nm, 400-900 nm and 800-1600 nm[J]. Journal of Optoelectronics and Advanced Materials, 2004, 6(4): 1199-1205.
[29]
[30] Liou Y-Y. Design of wide-angular-incidence antireflection coating over visible spectral region [J]. Japanese Journal of Applied Physics, 2006, 45(5A): 4051-4057.
[31] Liou Y-Y, Liu Y T. Digital designs of broadband visible antireflection coating for wide angular incidence[J]. Japanese Journal of Applied Physics, 2005, 44(1A): 163-167.
[32]
[33] Liou Y-Y, Chen Y P, Wang S K, et al. Optimization of a broadband visible or near-infrared antireflection coating design using recurrent circling search algorithm[J]. Japanese Journal of Applied Physics, 2011, 50: 032501.
[34]
[35] Dobrowolski J A, Tikhonravov A V, Trubetskov M K, et al. Optimal single-band normal-incidence antireflection coatings[J]. Appl Opt, 1996, 35(4): 644-658.
[36]
[37]
[38] Baumeister P. Starting designs for the computer optimization of optical coatings[J]. Appl Opt, 1995, 34(22): 4835-4843.
[39]
[40] Zheng Zhengrong, Gu Peifu, Chen Haixing, et al. Design and preparation of super broadband antireflection coating [J]. Acta Optica Sinica, 2009, 29(7): 2026-2029. (in Chinese)
[41]
[42] Pan Yongqiang, Hang Lingxia, Wu Zhensen, et al. Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16 nm[J]. Infrared Physics Technology, 2009, 52: 193-195.
[43] Tikhonravov A V, Trubetskov M K, Amotchkina T V, et al. Estimation of the average residual reflectance of broadband antireflection coatings [J]. Appl Opt, 2008, 47 (13): C124- C130.
[44]
[45] Hobson M P, Baldwin J E. Markov-chain Monte Carlo approach to the design of multilayer thin-film optical coatings [J]. Appl Opt, 2004, 43(13): 2651-2660.