[1]
[2] Fan W H, Burnett A, Upadhya P C, et al. Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy[J]. Appl Spectrosc, 2007, 61(6): 638-643.
[3]
[4] Radoslaw Ryniec, Przemyslaw Zagrajek, Tomasz Trzcinski, et al. Explosives identification model in reflection mode for THz security system [C]//SPIE, 2011, 8119 (4): 811904-1-819904-6.
[5]
[6] Endres C P, Muller H S P, Brunken S, et al. High resolution rotation-inversion spectroscopy on doubly deuterated ammonia, ND2H, up to 2.6 THz [J]. Journal of Molecular Structure, 2006, 795(1-3): 242-255.
[7] Peter H, Siegel, Pikov V. THz in biology and medicine: towards quantifying and understanding the interaction of millimeter and submillimeter-waves with cells and cell processes [C]//SPIE, 2010, 7562: 75620H-1-75620H-13.
[8]
[9]
[10] Pikov V, Siegel P H. Remote temperature monitoring of cells exposed to millimeter wave radiation using microscopic Raman spectroscopy [J]. Engineering in Medicine and Biology Magazine, 2010: 1-28.
[11]
[12] Francisco S. Determination of death thresholds and identification of terahertz (THz)-specific gene expression signatures [C]//SPIE, 2010, 7562: 75620K.
[13]
[14] Watanabe K, Murakami H. GaAs extrinsic photoconductors for the terahertz astronomy[C]//SPIE, 2007, 6840: 68401F.
[15] Liang Y Q, Fan W H. Image enhancement techniques used for THz imaging [C]//SPIE, 2011, 8195: 819515-1-819515-6.
[16]
[17] Rieh J S, Jeon S, Kim M. An overview of integrated THz electronicsfor communication applications [C]//MWSCAS, 2011 IEEE 54th International Midwest Symposium, 2011: 1-4.
[18]
[19] Chang T Y, Brdge T J. Laser action at 452, 496 and 541m in optically pumped CH3F [J]. Opt Commun, 1970, 9: 423-426.
[20]
[21] Yamanaka M, Homma Y, Tanaka A, et al. On the transverse mode in an optically pumped far-infrared NH3 laser[J]. Appl Phys, 1974, 13: 843-850.
[22]
[23] Tucker J R. Theory of an FIR gas laser [C]//International Conference on Submillimeter Waves and their Applications, 1974: 17-18.
[24]
[25] Henningsen J O, Jensen H G. The optically pumped far-infrared laser: rate equations and diagnostic experiments [J]. Quantum Electron, 1975, 11(6): 248-252.
[26]
[27]
[28] DeTemple T A, Danielewicz E J. Continuous-wave CH3F waveguide laser at 496 m: theory andexperiment [J]. Quantum Electron, 1976, 12(1): 40-47.
[29] Temkin R J, Cohn D R. Rate equations for an optically pumped far infrared laser [J]. Opt Commun, 1976, 16 (2): 213-217.
[30]
[31] Tucker J R. Absorption saturation and gain in pulsed CH3F lasers[J]. Opt Commun, 1976, 16(2): 209-212.
[32]
[33] Koepf G A, Smith K. The CW 496 m methylfluoride laser: review and theoretical predictions [J]. Quantum Electron, 1978, 14(5): 333-338.
[34]
[35]
[36] Evans D E, Sharp L E, Peebles W A, et al. Far-infrared super-radiant laser action in heavy water [J]. Opt Commun, 1976, 18(4): 479-484.
[37]
[38] Evans D E, Guinne R A, Huckridge D A, et al. Time-resolved pulses and wavelength measurements for the 114m and 66m emissions in the fir superradiant D2O laser [J]. Opt Commun, 1977, 22(2): 337-342.
[39] Weber M J. Handbook of Laser Science and Technology, vol. II: Gas Lasers [M]. Boca Raton: CRC Press, 1982.
[40]
[41] Tanaka A, Tanimoto A, Murata N, et al. CW efficient optically-pumped far-infrared waveguide NH3 lasers[J]. Opt Commun, 1977, 22: 17-21.
[42]
[43] Schatz W. Generation of tunabie far-infrared radiation by opticai-pumping moiecuiar gas-iasers [J]. Infrared Physics Technology, 1995, 36(1): 387-393.
[44]
[45]
[46] DeMichele A, Moretti A, Pereira D. Optically pumped 13CD3I: new Terahertz laser transitions [J]. Appl Phys B, 2011, 103: 659-662.
[47] Vasconcellos E C C C, Jackson M, Hockel H, et al. Discovery and measurement of optically pumped far-infrared laser emissions in 13CD3OH[J]. Applied Physics B, 2003, 77 (6-7): 561-562.
[48]
[49]
[50] Costa L F L, Moraes J C S, Cruz F C, et al. CH3OH optically pumped by a 13CO2 laser:new laser lines and assignments[J]. Applied Physics B, 2007, 86(4): 703-706.
[51]
[52] Costa L F L, Moraes J C S, Cruz F C, et al. Infrared and far-infrared spectroscopy of 13CH3OH: TeraHertz laser lines and assignments [J]. Journal of Molecular Spectroscopy, 2007, 241(2): 151-154.
[53]
[54] Jackson M, Petersen T, Zink L R. Frequencies and wavelengths from a new far-infrared lasing gas:13CHD2OH
[55] Jackson M, Nichols A J, Artagnon D, et al. First laser action observed from optically pumped CH317OH[J].Quantum Electronics, 2012, 48(3): 303-306.
[J]. Quantum Electronics, 2009, 45(7): 830-832.
[57]
[58] Keilmann F, Sheffield R L, Leite J R R, et al. Optical pumping and tunable laser spectroscopy of the v2 band of D2O[J]. Appl Phys Lett, 1975, 26: 19-22.
[59]
[60] Evans D E, Sharp L E. Far-infrared super-radiant laser action in heavy water [J]. Optics Communications, 1976, 18 (4): 479-484.
[61]
[62] De Michele A, Carelli G, Moretti A, et al. A new pulsed CO2 laser yielding new FIR laser lines from CH3OD pumped by the 10 P and 10 HP lines [J]. Phys B: At Mol Opt Phys, 2004, 37: 1979-1984.
[63] Danielewicz E J, Plant T K, DeTemple T A. Hybrid output mirror for optically pumped far-infrared lasers [J]. Opt Commun, 1975, 13: 366-369.
[64]
[65]
[66] Crenn J P, Veron D, Belland P. Theory of the transmission of metal strip gratings on a dielectric substrate: application to submillimeter laser coupling [J]. Infrared Milimeter Waves, 1986, 7: 1747-1767.
[67]
[68] Veron D, Whitbourn L B. Strip gratings on dielectric substrates as output couplers for submillimeter lasers[J]. Appl Opt, 1986, 25: 619-628.
[69] Bowden M D, James B W, Falconer I S, et al. Annular slot array output couplers for submillimetrelasers [J]. Opt Commun, 1992, 89: 419-422.
[70]
[71] Densing R, Erstling A, Gogolewski M, et al. Effective far infrared laser operation with mesh couplers[J]. Infrared Phys, 1992, 33: 219-226.
[72]
[73]
[74] Hodges D T, Foote F B, Reel R D. Effieient high-Power operation of the cw far-infrared waveguide laser [J]. Appl phys Lett, 1976, 29(10): 662-664.
[75] Chang T Y, Lin C. Effects of buffer gases on an optically pumped CH3F FIR laser [J]. Opt Soc Am, 1976, 66: 362-369.
[76]
[77]
[78] Hodges D T, Foote F B, Reel R D. High power operation and scaling behavior of CW optically pumped FIR waveguide lasers[J]. Quantum Electron, 1977, 13: 491-494.
[79]
[80] Mansfield D K, Horlbeck E, Bennett C L, et al. High power operation of the 119m line of optically pumped CH3OH[J]. Infrared Millimeter Waves, 1985, 6: 867-876.
[81] Plant T K, Newman L A, Danielewitz E J, et al. High power optically pumped far infrared lasers [J]. Microwave Theory Tech, 1974, 22: 988-990.
[82]
[83]
[84] Evans D E, Sharp L E, James B W, et al. Far-in-frared superradiant laser action in methyl fluoride [J]. Appl Phys Lett, 1975, 26: 630-632.
[85]
[86] Semet A, Johnson L C, Mansfield D K. A high energy D2O submillimeter laser for plasma diagnostics [J]. Infrared Millimeter Waves, 1983, 4: 231-316.
[87] Nishi Y, Murai A. FIR laser emissions from population inversion transition by TEA-CO2 laser pumping [J]. Infrared Millimetre Waves, 1990, 11(2): 309-322.
[88]
[89]
[90] Fetterman H R, Schlossberg H R, Waldman J. Submillimeter lasers optically pumped off resonance [J]. Opt Commun, 1972, 6: 156-159.
[91] Panock R L, Temkin R J. Interaction of two laser fields with a three-level molecular system [J]. Quantum Electron, 1977, 13: 425-434.
[92]
[93]
[94] Petuchowski S J, Rosenberger A T, DeTemple T A. Stimulated Raman emission in infrared excited gases [J]. Quantum Electron, 1977, 13: 476-481.
[95]
[96] Biron D G, Temkin R J, Lax B, et al. High-intensity CO2 laser pumping of a CH3F Raman FIR laser [J]. Opt Lett, 1979, 4: 381-383.
[97]
[98] Mathieu P, Izatt J R. Continuously tunable CH3F Raman farinfrared laser[J]. Opt Lett, 1981, 6: 369-371.
[99]
[100] Danly B G, Evangelides S G, Temkin R J, et al. A tunable far infrared laser[J]. Quantum Electron, 1984, 20: 834-837.
[101] DeTemple T. Pulsed optically pumped far infrared lasers [J]. Infrared and Millimeter Waves, 1979(1): 129-184.
[102]
[103] Lee S H, Petuchowski S J, Rosenberger A T, et al. Synchronous, mode-locked pumping of gas lasers [J]. Opt Lett, 1979, 4: 6-8.
[104]
[105]
[106] Lemley W, Nurmikko A V. High-intensity subnanosecond transients from synchronously pumped submillimeter-waves lasers[J]. Appl Phys Lett, 1979, 35: 33-35.
[107]
[108] Lemley W, Nurmikko A V. Generation of ultrashort pulses in synchronous pumping of near-millimeter wave lasers [J]. International Journal of Infrared and Millimeter Waves, 1980, 1(1): 85-94.
[109] Rosenberger, Chung H K, DE Temple. Sub-T2 optical pulse generation:application to optically pumped far-infrared lasers
[110]
[111] Lang P T, Schatz W, Renk K F. Generation of subnanosecond far-infrared laser pulses in a large spectral range with a Raman D2O laser optically pumped by a continuously tunable CO2 laser [J]. Opt Commun, 1991, 84: 29-36.
[112]
[113]
[114] Lang P T. Generation of tunable high power far-infrared radiation by stimulated Raman scattering in gaseous methyl-halides[J]. Infrared Phys, 1992, 33: 237-262.
[115] Lang P T, Heusinger M A, Kass T, et al. Efficient generation of FIR radiation by optical pumping of D2 18O[J]. Appl Phys B, 1992, 55: 347-354.
[J].Quantum Electron, 1984, 20(5): 523-532.
[117]
[118] Everitt H O, Skatrud D D, DeLucia F C. Dynamics and tunability of a small optically pumped CW far-infrared laser
[119] Luo Xizhang, Zheng Xingshi. A unified miniature optically pumped NH3 FIR cavity laser [J]. J Infrared Millim Waves, 1998, 17(4): 299-302. (in Chinese) 罗锡璋, 郑兴世. 一体化的小型腔式光泵NH3 分子远红外 激光器[J]. 红外与毫米波学报, 1998, 17(4): 299-302.
[120]
[121]
[122]

Behn R, Marc-Andge Dopertuis, Ivar Khelaerg, et al. Buffer gases to increase the efficiency of an optically pumped far infraed D2O laser[J]. IEEE Journal of Quantum Electronics, 1985, 21(8): 1278-1285.
[123]
[124]

[J]. Appl Phys Lett, 1986, 49: 995-997.
[126]
[127]