[1] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators [J]. Advances in Optics and Photonics, 2016, 8(2): 200-227. doi:  10.1364/AOP.8.000200
[2] Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 55(6): 447-449. doi:  10.1016/0030-4018(85)90151-8
[3] Chang G, Wei Z. Ultrafast fiber lasers: an expanding versatile toolbox [J]. iScience, 2020, 23(5): 101101. doi:  10.1016/j.isci.2020.101101
[4] Liu W, Liu M, Chen X, et al. Ultrafast photonics of two dimensional AuTe2Se4/3 in fiber lasers [J]. Communications Physics, 2020, 3(1): 1-6. doi:  10.1038/s42005-019-0260-3
[5] Fu S, Han X, Song R, et al. Generating a 64×64 beam lattice by geometric phase modulation from arbitrary incident polarizations [J]. Optics Letters, 2020, 45(22): 6330-6333. doi:  10.1364/OL.412411
[6] Fu S, Wang T, Zhang Z, et al. Selective acquisition of multiple states on hybrid Poincare sphere [J]. Applied Physics Letters, 2017, 110(19): 191102. doi:  10.1063/1.4983284
[7] Fu S, Gao C, Wang T, et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders [J]. Optics Letters, 2016, 41(23): 5454-5457. doi:  10.1364/OL.41.005454
[8] Chang H, Chang Q, Xi J, et al. First experimental demonstration of coherent beam combining of more than 100 beams [J]. Photonics Research, 2020, 8(12): 1943-1948. doi:  10.1364/PRJ.409788
[9] Lei C, Gu Y, Chen Z, et al. Incoherent beam combining of fiber lasers by an all-fiber 7× 1 signal combiner at a power level of 14 kW [J]. Optics Express, 2018, 26(8): 10421-10427. doi:  10.1364/OE.26.010421
[10] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications [J]. Advances in Optics and Photonics, 2011, 3(2): 161-204. doi:  10.1364/AOP.3.000161
[11] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185. doi:  10.1103/PhysRevA.45.8185
[12] Yang Y, Zhao Q, Liu L, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates [J]. Physical Review Applied, 2019, 12(6): 064007. doi:  10.1103/PhysRevApplied.12.064007
[13] Zhou H, Yang J, Gao C, et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation [J]. Optical Materials Express, 2019, 9(6): 2699-2707. doi:  10.1364/OME.9.002699
[14] Zhang J, Sun C, Xiong B, et al. An InP-based vortex beam emitter with monolithically integrated laser [J]. Nature Communications, 2018, 9(1): 1-6. doi:  10.1038/s41467-017-02088-w
[15] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters [J]. Science, 2012, 338(6105): 363-366. doi:  10.1126/science.1226528
[16] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7): 488-496. doi:  10.1038/nphoton.2012.138
[17] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548. doi:  10.1126/science.1237861
[18] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams [J]. Advances in Optics and Photonics, 2015, 7(1): 66-106. doi:  10.1364/AOP.7.000066
[19] Wang J. Advances in communications using optical vortices [J]. Photonics Research, 2016, 4(5): B14-B28. doi:  10.1364/PRJ.4.000B14
[20] Yu S. Potentials and challenges of using orbital angular momentum communications in optical interconnects [J]. Optics Express, 2015, 23(3): 3075-3087. doi:  10.1364/OE.23.003075
[21] Fu S, Zhai Y, Zhou H, et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding [J]. Optics Letters, 2019, 44(19): 4753-4756. doi:  10.1364/OL.44.004753
[22] Fu S, Zhai Y, Zhou H, et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying [J]. Optics Express, 2019, 27(23): 33111-33119. doi:  10.1364/OE.27.033111
[23] Fu S, Zhai Y, Zhou H, et al. Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices [J]. Chinese Optics Letters, 2019, 17(8): 080602. doi:  10.3788/COL201917.080602
[24] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum [J]. Science, 2013, 341(6145): 537-540. doi:  10.1126/science.1239936
[25] Lavery M P J, Barnett S M, Speirits F C, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body [J]. Optica, 2014, 1(1): 1-4. doi:  10.1364/OPTICA.1.000001
[26] Fu S, Wang T, Zhang Z, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions [J]. Optics Express, 2017, 25(17): 20098-20108. doi:  10.1364/OE.25.020098
[27] Zhai Y, Fu S, Yin C, et al. Detection of angular acceleration based on optical rotational Doppler effect [J]. Optics Express, 2019, 27(11): 15518-15527. doi:  10.1364/OE.27.015518
[28] Zhai Y, Fu S, Zhang J, et al. Remote detection of a rotator based on rotational Doppler effect [J]. Applied Physics Express, 2020, 13(2): 022012. doi:  10.35848/1882-0786/ab6e0c
[29] Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear Doppler effects [J]. Laser & Photonics Reviews, 2017, 11(6): 1700183.
[30] Zhang W, Gao J, Zhang D, et al. Free-space remote sensing of rotation at the photon-counting level [J]. Physical Review Applied, 2018, 10(4): 044014. doi:  10.1103/PhysRevApplied.10.044014
[31] Qiu S, Liu T, Ren Y, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect [J]. Optics Express, 2019, 27(17): 24781-24792. doi:  10.1364/OE.27.024781
[32] Padgett M, Bowman R. Tweezers with a twist [J]. Nature Photonics, 2011, 5(6): 343-348. doi:  10.1038/nphoton.2011.81
[33] Gecevičius M, Drevinskas R, Beresna M, et al. Single beam optical vortex tweezers with tunable orbital angular momentum [J]. Applied Physics Letters, 2014, 104(23): 231110. doi:  10.1063/1.4882418
[34] Liang Y, Yao B, Ma B, et al. Holographic optical trapping and manipulation based phase-only liquid-crystal spatial light modulator [J]. Acta Optica Sinca, 2016, 36(3): 0309001. (in Chinese)
[35] Chen M, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam [J]. Optics Letters, 2013, 38(22): 4919-4922. doi:  10.1364/OL.38.004919
[36] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption [J]. Nature Photonics, 2020, 14(2): 102-108. doi:  10.1038/s41566-019-0560-x
[37] Granata M, Buy C, Ward R, et al. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors [J]. Physical Review Letters, 2010, 105(23): 231102. doi:  10.1103/PhysRevLett.105.231102
[38] Noack A, Bogan C, Willke B. Higher-order Laguerre–Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors [J]. Optics Letters, 2017, 42(4): 751-754. doi:  10.1364/OL.42.000751
[39] Tamburini F, Thidé B, Molina-Terriza G, et al. Twisting of light around rotating black holes [J]. Nature Physics, 2011, 7(3): 195-197. doi:  10.1038/nphys1907
[40] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, 1(1): 1-57. doi:  10.1364/AOP.1.000001
[41] Fu S, Gao C, Shi Y, et al. Generating polarization vortices by using helical beams and a Twyman Green interferometer [J]. Optics Letters, 2015, 40(8): 1775-1778. doi:  10.1364/OL.40.001775
[42] Fu S, Zhai Y, Wang T, et al. Tailoring arbitrary hybrid Poincaré beams through a single hologram [J]. Applied Physics Letters, 2017, 111(21): 211101. doi:  10.1063/1.5008954
[43] Song R, Gao C, Zhou H, et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm [J]. Optics Letters, 2020, 45(16): 4626-4629. doi:  10.1364/OL.400835
[44] Fu S, Gao C, Wang T, et al. Anisotropic polarization modulation for the production of arbitrary Poincaré beams [J]. JOSA B, 2018, 35(1): 1-7. doi:  10.1364/JOSAB.35.000001
[45] Shen Y, Yang X, Naidoo D, et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser [J]. Optica, 2020, 7(7): 820-831. doi:  10.1364/OPTICA.382994
[46] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency [J]. Journal of Physics D: Applied Physics, 1999, 32(13): 1455. doi:  10.1088/0022-3727/32/13/304
[47] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation [J]. Applied Physics A, 2007, 86(3): 329-334. doi:  10.1007/s00339-006-3784-9
[48] Zhao W Q, Tang F, Qiu L R, et al. Research status and application on the focusing properties of cylindrical vector beams [J]. Acta Physica Sinica, 2013, 62(5): 054201. (in Chinese) doi:  10.7498/aps.62.054201
[49] Zhou Z, Tan Q, Jin G. Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams [J]. Chinese Optics Letters, 2010, 8(12): 1178-1181. doi:  10.3788/COL20100812.1178
[50] Fu S Y, G C Q. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings [J]. Acta Physica Sinica, 2018, 67(3): 034201. (in Chinese) doi:  10.7498/aps.67.20171899
[51] Sztul H I, Alfano R R. Double-slit interference with Laguerre-Gaussian beams [J]. Optics Letters, 2006, 31(7): 999-1001. doi:  10.1364/OL.31.000999
[52] Emile O, Emile J. Young’s double-slit interference pattern from a twisted beam [J]. Applied Physics B, 2014, 117(1): 487-491. doi:  10.1007/s00340-014-5859-1
[53] Hickmann J M, Fonseca E J S, Soares W C, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum [J]. Physical Review Letters, 2010, 105(5): 053904. doi:  10.1103/PhysRevLett.105.053904
[54] Soares W C, Vidal I, Caetano D P, et al. Measuring orbital angular momentum of a photon using the diffraction reciprocal lattice of a triangular slit[C]//Frontiers in Optics, Optical Society of America, 2008: FThO2.
[55] Stahl C, Gbur G. Analytic calculation of vortex diffraction by a triangular aperture [J]. JOSA A, 2016, 33(6): 1175-1180. doi:  10.1364/JOSAA.33.001175
[56] Liu Y, Tao H, Pu J, et al. Detecting the topological charge of vortex beams using an annular triangle aperture [J]. Optics & Laser Technology, 2011, 43(7): 1233-1236.
[57] Dai K, Gao C, Zhong L, et al. Measuring OAM states of light beams with gradually-changing-period gratings [J]. Optics Letters, 2015, 40(4): 562-565. doi:  10.1364/OL.40.000562
[58] Fu S, Wang T, Gao Y, et al. Diagnostics of the topological charge of optical vortex by a phase-diffractive element [J]. Chinese Optics Letters, 2016, 14(8): 080501. doi:  10.3788/COL201614.080501
[59] Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings [J]. Scientific Reports, 2017, 7(1): 40781. doi:  10.1038/s41598-016-0028-x
[60] Zhao Q, Dong M, Bai Y, et al. Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer [J]. Photonics Research, 2020, 8: 745-749. doi:  10.1364/PRJ.384925
[61] Serna J, Encinas-Sanz F, Nemeş G. Complete spatial characterization of a pulsed doughnut-type beam by use of spherical optics and a cylindrical lens [J]. JOSA A, 2001, 18(7): 1726-1733. doi:  10.1364/JOSAA.18.001726
[62] Denisenko V, Shvedov V, Desyatnikov A S, et al. Determination of topological charges of polychromatic optical vortices [J]. Optics Express, 2009, 17(26): 23374-23379. doi:  10.1364/OE.17.023374
[63] Alperin S N, Niederriter R D, Gopinath J T, et al. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens [J]. Optics Letters, 2016, 41(21): 5019-5022. doi:  10.1364/OL.41.005019
[64] Vaity P, Banerji J, Singh R P. Measuring the topological charge of an optical vortex by using a tilted convex lens [J]. Physics Letters A, 2013, 377(15): 1154-1156. doi:  10.1016/j.physleta.2013.02.030
[65] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum [J]. Optics Express, 2004, 12(22): 5448-5456. doi:  10.1364/OPEX.12.005448
[66] Moreno I, Davis J A, Pascoguin B M L, et al. Vortex sensing diffraction gratings [J]. Optics Letters, 2009, 34(19): 2927-2929. doi:  10.1364/OL.34.002927
[67] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings [J]. Optics Letters, 2010, 35(20): 3495-3497. doi:  10.1364/OL.35.003495
[68] Fu S, Wang T, Zhang S, et al. Integrating 5 × 5 Dammann gratings to detect orbital angular momentum states of beams with the range of −24 to +24 [J]. Applied Optics, 2016, 55(7): 1514-1517. doi:  10.1364/AO.55.001514
[69] Fu S, Zhang S, Wang T, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices [J]. Optics Express, 2016, 24(6): 6240-6248. doi:  10.1364/OE.24.006240
[70] Fu S, Zhai Y, Wang T, et al. Orbital angular momentum channel monitoring of coaxially multiplexed vortices by diffraction pattern analysis [J]. Applied Optics, 2018, 57(5): 1056-1060. doi:  10.1364/AO.57.001056
[71] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon [J]. Physical Review Letters, 2002, 88(25): 257901. doi:  10.1103/PhysRevLett.88.257901
[72] Leach J, Courtial J, Skeldon K, et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon [J]. Physical Review Letters, 2004, 92(1): 013601. doi:  10.1103/PhysRevLett.92.013601
[73] Lavery M P J, Dudley A, Forbes A, et al. Robust interferometer for the routing of light beams carrying orbital angular momentum [J]. New Journal of Physics, 2011, 13(9): 093014. doi:  10.1088/1367-2630/13/9/093014
[74] Abouraddy A F, Yarnall T M, Saleh B E A. Angular and radial mode analyzer for optical beams [J]. Optics Letters, 2011, 36(23): 4683-4685. doi:  10.1364/OL.36.004683
[75] Zhang W, Qi Q, Zhou J, et al. Mimicking Faraday rotation to sort the orbital angular momentum of light [J]. Physical Review Letters, 2014, 112(15): 153601. doi:  10.1103/PhysRevLett.112.153601
[76] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light [J]. Physical Review Letters, 2010, 105(15): 153601. doi:  10.1103/PhysRevLett.105.153601
[77] Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light [J]. Nature Communications, 2013, 4(1): 1-6.
[78] O’Sullivan M N, Mirhosseini M, Malik M, et al. Near-perfect sorting of orbital angular momentum and angular position states of light [J]. Optics Express, 2012, 20(22): 24444-24449. doi:  10.1364/OE.20.024444
[79] Li C, Zhao S. Efficient separating orbital angular momentum mode with radial varying phase [J]. Photonics Research, 2017, 5(4): 267-270. doi:  10.1364/PRJ.5.000267
[80] Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes [J]. Physical Review Letters, 2018, 120(19): 193904. doi:  10.1103/PhysRevLett.120.193904
[81] Wen Y, Chremmos I, Chen Y, et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems [J]. Optica, 2020, 7(3): 254-262. doi:  10.1364/OPTICA.385590
[82] Lavery M P J, Robertson D J, Sponselli A, et al. Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states [J]. New Journal of Physics, 2013, 15(1): 013024. doi:  10.1088/1367-2630/15/1/013024
[83] Lavery M P J, Berkhout G C G, Courtial J, et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation [J]. Journal of Optics, 2011, 13(6): 064006. doi:  10.1088/2040-8978/13/6/064006
[84] Lavery M P J, Robertson D J, Berkhout G C G, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon [J]. Optics Express, 2012, 20(3): 2110-2115. doi:  10.1364/OE.20.002110
[85] Morgan K S, Raghu I S, Johnson E G. Design and fabrication of diffractive optics for orbital angular momentum space division multiplexing[C]//Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VIII. International Society for Optics and Photonics, 2015, 9374: 93740Y.
[86] Ruffato G, Massari M, Parisi G, et al. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics [J]. Optics Express, 2017, 25(7): 7859-7868. doi:  10.1364/OE.25.007859
[87] Lightman S, Hurvitz G, Gvishi R, et al. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing [J]. Optica, 2017, 4(6): 605-610. doi:  10.1364/OPTICA.4.000605
[88] Ruffato G, Girardi M, Massari M, et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams [J]. Scientific Reports, 2018, 8(1): 1-12.
[89] Walsh G F. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate [J]. Optics Express, 2016, 24(6): 6689-6704. doi:  10.1364/OE.24.006689
[90] Walsh G F, De Sio L, Roberts D E, et al. Parallel sorting of orbital and spin angular momenta of light in a record large number of channels [J]. Optics Letters, 2018, 43(10): 2256-2259. doi:  10.1364/OL.43.002256
[91] Ruffato G, Capaldo P, Massari M, et al. Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics [J]. Optics Express, 2019, 27(11): 15750-15764. doi:  10.1364/OE.27.015750
[92] Fang J, Xie Z, Lei T, et al. Spin-dependent optical geometric transformation for cylindrical vector beam multiplexing communication [J]. ACS Photonics, 2018, 5(9): 3478-3484. doi:  10.1021/acsphotonics.8b00680
[93] Malik M, Mirhosseini M, Lavery M P J, et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector [J]. Nature Communications, 2014, 5(1): 1-7.
[94] Wang B, Wen Y, Zhu J, et al. Sorting full angular momentum states with Pancharatnam-Berry metasurfaces based on spiral transformation [J]. Optics Express, 2020, 28(11): 16342-16351. doi:  10.1364/OE.393859
[95] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link [J]. Applied Optics, 2008, 47(13): 2414-2429. doi:  10.1364/AO.47.002414
[96] Gruneisen M T, Dymale R C, Stoltenberg K E, et al. Optical vortex discrimination with a transmission volume hologram [J]. New Journal of Physics, 2011, 13(8): 083030. doi:  10.1088/1367-2630/13/8/083030
[97] Pires H D L, Woudenberg J, Van Exter M P. Measurement of the orbital angular momentum spectrum of partially coherent beams [J]. Optics Letters, 2010, 35(6): 889-891. doi:  10.1364/OL.35.000889
[98] Pires H D L, Florijn H C B, Van Exter M P. Measurement of the spiral spectrum of entangled two-photon states [J]. Physical Review Letters, 2010, 104(2): 020505. doi:  10.1103/PhysRevLett.104.020505
[99] Jha A K, Agarwal G S, Boyd R W. Partial angular coherence and the angular Schmidt spectrum of entangled two-photon fields [J]. Physical Review A, 2011, 84(6): 063847. doi:  10.1103/PhysRevA.84.063847
[100] Malik M, Murugkar S, Leach J, et al. Measurement of the orbital-angular-momentum spectrum of fields with partial angular coherence using double-angular-slit interference [J]. Physical Review A, 2012, 86(6): 063806. doi:  10.1103/PhysRevA.86.063806
[101] Jha A K, Leach J, Jack B, et al. Angular two-photon interference and angular two-qubit states [J]. Physical Review Letters, 2010, 104(1): 010501. doi:  10.1103/PhysRevLett.104.010501
[102] Belmonte A, Torres J P. Optical Doppler shift with structured light [J]. Optics Letters, 2011, 36(22): 4437-4439. doi:  10.1364/OL.36.004437
[103] Zhou H, Fu D, Dong J, et al. Theoretical analysis and experimental verification on optical rotational Doppler effect [J]. Optics Express, 2016, 24(9): 10050-10056. doi:  10.1364/OE.24.010050
[104] Vasnetsov M V, Torres J P, Petrov D V, et al. Observation of the orbital angular momentum spectrum of a light beam [J]. Optics Letters, 2003, 28(23): 2285-2287. doi:  10.1364/OL.28.002285
[105] Zhou H L, Fu D Z, Dong J J, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect [J]. Light: Science & Applications, 2017, 6(4): e16251.
[106] Bierdz P, Deng H. A compact orbital angular momentum spectrometer using quantum zeno interrogation [J]. Optics Express, 2011, 19(12): 11615-11622. doi:  10.1364/OE.19.011615
[107] Bierdz P, Kwon M, Roncaioli C, et al. High fidelity detection of the orbital angular momentum of light by time mapping [J]. New Journal of Physics, 2013, 15(11): 113062. doi:  10.1088/1367-2630/15/11/113062
[108] Karimi E, Marrucci L, de Lisio C, et al. Time-division multiplexing of the orbital angular momentum of light [J]. Optics Letters, 2012, 37(2): 127-129. doi:  10.1364/OL.37.000127
[109] Clemente P, Durán V, Tajahuerce E, et al. Compressive holography with a single-pixel detector [J]. Optics Letters, 2013, 38(14): 2524-2527. doi:  10.1364/OL.38.002524
[110] Zhang Z, Wang X, Zheng G, et al. Fast Fourier single-pixel imaging via binary illumination [J]. Scientific Reports, 2017, 7(1): 12029. doi:  s41598-017-12228-3
[111] Hu X, Zhang H, Zhao Q, et al. Single-pixel phase imaging by Fourier spectrum sampling [J]. Applied Physics Letters, 2019, 114(5): 051102. doi:  10.1063/1.5087174
[112] Ota K, Hayasaki Y. Complex-amplitude single-pixel imaging [J]. Optics Letters, 2018, 43(15): 3682-3685. doi:  10.1364/OL.43.003682
[113] Liu R, Zhao S, Zhang P, et al. Complex wavefront reconstruction with single-pixel detector [J]. Applied Physics Letters, 2019, 114(16): 161901. doi:  10.1063/1.5087094
[114] Zhao S, Liu R, Zhang P, et al. Fourier single-pixel reconstruction of a complex amplitude optical field [J]. Optics Letters, 2019, 44(13): 3278-3281. doi:  10.1364/OL.44.003278
[115] Zhao S, Chen S, Wang X, et al. Measuring the complex spectrum of orbital angular momentum and radial index with a single-pixel detector [J]. Optics Letters, 2020, 45(21): 5990-5993. doi:  10.1364/OL.409967
[116] Andersen J M, Alperin S N, Voitiv A A, et al. Characterizing vortex beams from a spatial light modulator with collinear phase-shifting holography [J]. Applied Optics, 2019, 58(2): 404-409. doi:  10.1364/AO.58.000404
[117] Litvin I A, Dudley A, Roux F S, et al. Azimuthal decomposition with digital holograms [J]. Optics Express, 2012, 20(10): 10996-11004. doi:  10.1364/OE.20.010996
[118] Zhao P, Li S, Feng X, et al. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method [J]. Optics Letters, 2017, 42(6): 1080-1083. doi:  10.1364/OL.42.001080
[119] D’Errico A, D’Amelio R, Piccirillo B, et al. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams [J]. Optica, 2017, 4(11): 1350-1357. doi:  10.1364/OPTICA.4.001350
[120] Cox M A, Toninelli E, Cheng L, et al. A high-speed, wavelength invariant, single-pixel wavefront sensor with a digital micromirror device [J]. IEEE Access, 2019, 7: 85860-85866. doi:  10.1109/ACCESS.2019.2925972
[121] Pachava S, Dixit A, Srinivasan B. Modal decomposition of Laguerre Gaussian beams with different radial orders using optical correlation technique [J]. Optics Express, 2019, 27(9): 13182-13193. doi:  10.1364/OE.27.013182
[122] Volyar A, Bretsko M, Akimova Y, et al. Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront [J]. Optics Letters, 2018, 43(22): 5635-5638. doi:  10.1364/OL.43.005635
[123] Volyar A, Bretsko M, Akimova Y, et al. Digital sorting perturbed Laguerre–Gaussian beams by radial numbers [J]. JOSA A, 2020, 37(6): 959-968. doi:  10.1364/JOSAA.391153
[124] Fu S, Zhai Y, Zhang J, et al. Universal orbital angular momentum spectrum analyzer for beams [J]. PhotoniX, 2020, 1(1): 1-12. doi:  10.1186/s43074-020-00006-w