[1] 王颖. 滤光片型光谱成像技术研究[D]. 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.

Wang Ying. Study of spectral imaging system based on filter [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2015. (in Chinese)
[2]

Sellar R G, Boreman G D. Classification of imaging spectrometers for remote sensing applications [J]. Optical Engineering, 2005, 44(1): 013602. doi:  10.1117/1.1813441
[3]

Wang Xinquan, Huang Min, Gao Xiaohui, et al. Portable multispectral imager based on LCTF [J]. Acta Photonica Sinica, 2010, 39(1): 71-75. (in Chinese) doi:  10.3788/gzxb20103901.0071
[4]

Cao Congfeng, Fang Junyong, Zhao Dong. Development of UAV-borne multispectral camera based on narrow bandwidth filter array [J]. Optical Technique, 2018, 44(1): 51-55. (in Chinese)
[5]

Holmes R, U Grözinger, Krause O, et al. A filter wheel mechanism for the Euclid near-infrared imaging photometer [C]//SPIE, 2017, 7739: 856941.
[6]

Liu Yinnian. Development of hyperspectral imaging remote sensing technology [J]. National Remote Sensing Bulletin, 2021, 25(1): 439-459. (in Chinese)
[7]

Zhao Huijie, Zhou Pengwei, Zhang Ying, et al. Acousto-optic tunable filter based spectral imaging technology [J]. Infrared and Laser Engineering, 2009, 38(2): 189-193. (in Chinese) doi:  10.3969/j.issn.1007-2276.2009.02.001
[8]

Gao Zedong, Hao Qun, Liu Yu, et al. Hyperspectral imaging and application technology development [J]. Metrology & Measurement Technology, 2019, 39(4): 24-34. (in Chinese)
[9]

Wang Jianyu, He Zhiping, Xu Rui. Application of imaging spectrum technology based on AOTF in deep-space exploration [J]. Infrared, 2013, 34(12): 1-9. (in Chinese)
[10] 杨国伟. 宽光谱窄带可调谐滤光片的研究[D]. 浙江大学, 2010.

Yang Guowei. Research on narrow pass-band tunable filters work in broad spectral range [D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
[11]

Puschell J J , Huang A H , Woolf H M . GWIS: Geostationary wedge-filter imager-sounder[C]//SPIE, 1999, 3756: 223-232.
[12] 李洪波. 基于线性渐变滤光片的光谱成像技术研究[D]. 中国科学院大学(中国科学院西安光学精密机械研究所), 2018.

Li Hongbo. Study of imaging hyperspectral technique based on linear variable filter [D]. Xi’an : University of Chinese Academy of Sciences (Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences), 2018. (in Chinese)
[13] 袁境泽. 人体血红蛋白近红外光谱无创分析方法研究[D]. 中国科学院长春光学精密机械与物理研究所, 2017.

Yuan Jingze. Research on noninvasive measurement of human hemoglobin by near infrared spectroscopy [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2017. (in Chinese)
[14]

Krasilnikova A , Piegari A , Dami M , et al. Spatially resolved spectroscopy for non-uniform thin film coatings: comparison of two dedicated set-ups[C]//SPIE, 2005, 5965: 573-580.
[15]

Chen Peng, Luo Luwen, Sheng Bin, et al. Study on fabrication method of linear variable filter [J]. Optical Instruments, 2016, 38(4): 308-312. (in Chinese) doi:  10.3969/j.issn.1005-5630.2016.04.006
[16] 于新洋. 线性渐变滤光片型近红外水果品质分析仪及应用研究[D]. 中国科学院长春光学精密机械与物理研究所, 2016.

Yu Xinyang. Development and application of a handheld near-infrared spectrometer based on a linear variable filter for measuring the internal quality of fruit [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2016. (in Chinese)
[17]

Lin Z, Anthon E W, Harrison J C, et al. Miniature spectrometer based on linear variable interference filters[C]//SPIE, 1999, 3855: 42-50.
[18]

Kumar A, Chowdhury A R. Hyper-spectral imager in visible and near-infrared band for lunar compositional mapping [J]. Journal of Earth System Science, 2005, 114(6): 721-724. doi:  10.1007/BF02715956
[19]

Zhang Jian, Gao Jinsong, Li Yudong. Linear variable filter with high dispersion coefficient [J]. Optics and Precision Engineering, 2015, 23(5): 1221-1226. (in Chinese) doi:  10.3788/OPE.20152305.1221
[20]

Soukup M, Gailis J, Fantin D, et al. Hyperscout: Onboard processing of hyperspectral imaging data on a nanosatellite[C]// Small Satellites, System & Services Symposium (4S), 2016.
[21]

Mahmoud K, Park S, Lee D H. Development of a new linearly variable edge filter (LVEF)-based compact slit-less mini-spectrometer [J]. Journal of Physics Conference Series, 2018, 972(1): 012026.
[22]

Song S, Gibson D, Ahmadzadeh S, et al. Low-cost hyper-spectral imaging system using a linear variable bandpass filter for agritech applications [J]. Applied Optics, 2020, 59(5): A167-A175.
[23]

Fan Xinghao, Liu Chunyu, Jin Guang, et al. Small and high-resolution spaceborne hyperspectral imaging spectrometer [J]. Optics and Precision Engineering, 2021, 29(3): 463-473. (in Chinese) doi:  10.37188/OPE.20212903.0463
[24]

Fan X, Liu C, Liu S, et al. The instrument design of lightweight and large field of view high-resolution hyperspectral camera [J]. Sensors, 2021, 21(7): 2276. doi:  10.3390/s21072276
[25]

Tang Shaofan, Lu Zhijun, Wang Weigang, et al. Brief description of space hyperspectral imager (Invited) [J]. Infrared and Laser Engineering, 2019, 48(3): 0303003. (in Chinese)
[26]

Zhao Yongqiang, Liu Xinyu, Tang Chaolong. Progress in speccc filter arrays [J]. Laser & Optoelectronics Progress, 2020, 57(19): 192301. (in Chinese)
[27]

Eichenholz J M, Barnett N, Juang Y , et al. Real-time megapixel multispectral bioimaging [C]//SPIE, 2010, 7568: 75681L.
[28]

Geelen B, Tack N, Lambrechts A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic [C]//SPIE, 2014, 8974: 89740L.
[29]

D Yi, Kong L, Sprigle S, et al. Detecting early stage pressure ulcer on dark skin using multispectral imager [C]//SPIE, 2010, 7560: 75600U.
[30]

Yi D, Awwal A, Iftekharuddin K M, et al. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity [C]//SPIE, 2012, 8498: 84980J.
[31]

Xie Y, Liu C, Liu S, et al. Snapshot imaging spectrometer based on pixel-level filter array (PFA) [J]. Sensors, 2021, 21(7): 2289. doi:  10.3390/s21072289
[32]

Zhang J, Zhu X, Bao J. Solver-informed neural networks for spectrum reconstruction of colloidal quantum dot spectrometers [J]. Optics Express, 2020, 28(22): 33656-33672. doi:  10.1364/OE.402149
[33]

Bao J, Bawendi M G. A colloidal quantum dot spectrometer [J]. Science Foundation in China, 2015, 523(3): 67-70.
[34]

Li H, Bian L, Gu K, et al. A near‐infrared miniature quantum dot spectrometer [J]. Advanced Optical Materials, 2021, 9(15): 2100376.