[1] Li X, Huang Y, Zhang P, et al. Infrared imaging system and applications [J]. Laser & Infrared, 2014, 44(3): 229-234. (in Chinese)
[2] Pan Y, Zhao Y, Zhang F. IR fingerprint spectrum and its analyzing method [J]. Modern Instruments, 2000(1): 1-13. (in Chinese)
[3] Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas [J]. Chemical Reviews, 2017, 117(7): 5110-5145. doi:  10.1021/acs.chemrev.6b00743
[4] Yang X, Sun Z, Low T, et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy [J]. Advanced Materials, 2018, 30(20): 1704896. doi:  10.1002/adma.201704896
[5] Zhang H, Wang J, Li N. Surface-enhanced infrared absorption [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(12): 124204. (in Chinese)
[6] Wang H L, You E M, Panneerselvam R, et al. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design [J]. Light:Science & Applications, 2021, 10(1): 161.
[7] Dong L, Yang X, Zhang C, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy [J]. Nano Letters, 2017, 17(9): 5768-5774. doi:  10.1021/acs.nanolett.7b02736
[8] Yoo D, Mohr D A, Vidal-Codina F, et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps [J]. Nano Letters, 2018, 18(3): 1930-1936. doi:  10.1021/acs.nanolett.7b05295
[9] Hartstein A, Kirtley J R, Tsang J C. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers [J]. Physical Review Letters, 1980, 45(3): 201-204. doi:  10.1103/PhysRevLett.45.201
[10] Li N, Yin H, Zhuo X, et al. Infrared-responsive colloidal silver nanorods for surface-enhanced infrared absorption [J]. Advanced Optical Materials, 2018, 6(17): 1800436. doi:  10.1002/adom.201800436
[11] Cerjan B, Yang X, Nordlander P, et al. Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy [J]. ACS Photonics, 2016, 3(3): 354-360. doi:  10.1021/acsphotonics.6b00024
[12] Leitis A, Tseng M L, John-Herpin A, et al. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing [J]. Advanced Materials, 2021, 33(43): 2102232. doi:  10.1002/adma.202102232
[13] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene [J]. Science, 2015, 349(6244): 165-168. doi:  10.1126/science.aab2051
[14] Wu C, Guo X, Hu H, et al. Graphene plasmon enhanced infrared spectroscopy [J]. Acta Physica Sinica, 2019, 68(14): 148103. (in Chinese) doi:  10.7498/aps.68.20190903
[15] Kuhner L, Hentschel M, Zschieschang U, et al. Nanoantenna-enhanced infrared spectroscopic chemical imaging [J]. ACS Sensors, 2017, 2(5): 655-662. doi:  10.1021/acssensors.7b00063
[16] Rodrigo D, Tittl A, Ait-Bouziad N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces [J]. Nature Communications, 2018, 9(1): 2160. doi:  10.1038/s41467-018-04594-x
[17] Zhu Y, Li Z, Hao Z, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface [J]. Light:Science & Applications, 2018, 7(1): 67.
[18] Hoang C V, Oyama M, Saito O, et al. Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy [J]. Scientific Reports, 2013, 3(1): 1175. doi:  10.1038/srep01175
[19] Chong X, Zhang Y, Li E, et al. Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing [J]. ACS Sensors, 2018, 3(1): 230-238. doi:  10.1021/acssensors.7b00891
[20] Hu H, Yang X, Guo X, et al. Gas identification with graphene plasmons [J]. Nature Communications, 2019, 10(1): 1131. doi:  10.1038/s41467-019-09008-0
[21] Zhou H, Hui X, Li D, et al. Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases [J]. Advanced Science, 2020, 7(20): 2001173. doi:  10.1002/advs.202001173
[22] Fonollosa J, Rubio R, Hartwig S, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications [J]. Sensors and Actuators B:Chemical, 2008, 132(2): 498-507. doi:  10.1016/j.snb.2007.11.014
[23] Soref R. Mid-infrared photonics in silicon and germanium [J]. Nature Photonics, 2010, 4(8): 495-497. doi:  10.1038/nphoton.2010.171
[24] Shen W, Xue M and Yu J. Long wave infrared fast objective with wide field of view [J]. Acta Photonica Sinica, 2004, 33(4): 460-463. (in Chinese)
[25] Zhang L, Chen L, Fan Y, et al. Development of mid-infrared transmitting glasses window and applications [J]. Acta Optica Sinica, 2011, 31(9): 296-304. (in Chinese)
[26] Tang B, Wang Z, Fan Y, et al. Trends and status in mid-infrared glasses [J]. Infrared and Laser Engineering, 2008, 37(S3): 311-314. (in Chinese)
[27] Dai S, Chen H, Li M, et al. Chalcogenide glasses and their infrared optical applications [J]. Infrared and Laser Engineering, 2012, 41(04): 847-852. (in Chinese)
[28] Huang L, Coppens Z, Hallman K, et al. Long wavelength infrared imaging under ambient thermal radiation via an all-silicon metalens [J]. Optical Materials Express, 2021, 11(9): 2907-2914. doi:  10.1364/OME.434362
[29] Zhang S, Kim M H, Aieta F, et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays [J]. Optics Express, 2016, 24(16): 18024-18034. doi:  10.1364/OE.24.018024
[30] Zuo H, Choi D Y, Gai X, et al. High‐efficiency all‐dielectric metalenses for mid‐infrared imaging [J]. Advanced Optical Materials, 2017, 5(23): 1700585. doi:  10.1002/adom.201700585
[31] Fan Q, Liu M, Yang C, et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging [J]. Applied Physics Letters, 2018, 113(20): 201104. doi:  10.1063/1.5050562
[32] Song N, Xu N, Shan D, et al. Broadband achromatic metasurfaces for longwave infrared applications [J]. Nanomaterials, 2021, 11(10): 2760. doi:  10.3390/nano11102760
[33] Yan C, Li X, Pu M, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces [J]. Applied Physics Letters, 2019, 114(16): 161904. doi:  10.1063/1.5091475
[34] Cao G, Xu H-X, Zhou L-M, et al. Infrared metasurface-enabled compact polarization nanodevices [J]. Materials Today, 2021, 50: 499-515. doi:  10.1016/j.mattod.2021.06.014
[35] Yao Y, Shankar R, Kats M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators [J]. Nano Letters, 2014, 14(11): 6526-6532. doi:  10.1021/nl503104n
[36] Tittl A, Michel A K, Schaferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability [J]. Advanced Materials, 2015, 27(31): 4597-4603. doi:  10.1002/adma.201502023
[37] Jiang S, Li J, Li J, et al. Genetic optimization of plasmonic metamaterial absorber towards dual-band infrared imaging polarimetry [J]. Optics Express, 2020, 28(15): 22617-22629. doi:  10.1364/OE.397868
[38] Yong-qian L, Yong-jun G, Lei S, et al. Polarization-dependent absorption of rectangular-block metamaterials in infrared region [J]. Optical and Precision Engineering, 2014, 22(11): 2998-3003. (in Chinese) doi:  10.3788/OPE.20142211.2998
[39] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
[40] Wang Jingdong, Ye Wencheng, Zhang Weiting, et al. Design of infrared metasurfaces splitter arrays [J]. Optical and Precision Engineering, 2021, 29(04): 674-681. (in Chinese) doi:  10.37188/OPE.20212904.0674
[41] Liu Yitian,Chen Qikai, Tang Zhiyuan, et al. Research progress of aberration analysis and imaging technology based on metalens [J]. Chinese Optics, 2021, 14(4): 831-850. (in Chinese) doi:  10.37188/CO.2021-0014
[42] Wang Yilin, Fan Qingbin, Xu Ting. Progress of advanced imaging applications based on electromagnetic metalens [J]. Infrared and Laser Engineering, 2021, 50(5): 20211026. (in Chinese) doi:  10.3788/IRLA20211026
[43] Li Tianyou, Huang Lingling, Wang Yongtian. The principle and research progress of metasurfaces [J]. Chinese Optics, 2017, 10(5): 523-540. (in Chinese) doi:  10.3788/co.20171005.0523
[44] Yu N, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces [J]. Nano Letters, 2012, 12(12): 6328-6333. doi:  10.1021/nl303445u
[45] Safaei A, Vázquez-Guardado A, Franklin D, et al. High-efficiency broadband mid-infrared flat lens [J]. Advanced Optical Materials, 2018, 6(13): 1800216. doi:  10.1002/adom.201800216
[46] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets [J]. Physical Review Letters, 2013, 110(19): 197401. doi:  10.1103/PhysRevLett.110.197401
[47] Love A E H. The integration of the equations of propagation of electric waves [J]. Philosophical Transactions of the Royal Society of London. Series A, 1901, 197(287-299): 1-45. doi:  10.1098/rsta.1901.0013
[48] Schelkunoff S A. Some equivalence theorems of electromagnetics and their application to radiation problems [J]. The Bell System Technical Journal, 1936, 15(1): 92-112. doi:  10.1002/j.1538-7305.1936.tb00720.x
[49] Epstein A, Eleftheriades G V. Huygens’ metasurfaces via the equivalence principle: design and applications [J]. Journal of the Optical Society of America B, 2016, 33(2): A31-A50. doi:  10.1364/JOSAB.33.000A31
[50] Campione S, Basilio L I, Warne L K, et al. Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces [J]. Optics Express, 2015, 23(3): 2293-2307. doi:  10.1364/OE.23.002293
[51] Zhang L, Ding J, Zheng H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics [J]. Nature Communications, 2018, 9(1): 1481. doi:  10.1038/s41467-018-03831-7
[52] Leitis A, Heßler A, Wahl S, et al. All‐dielectric programmable Huygens' metasurfaces [J]. Advanced Functional Materials, 2020, 30(19): 1910259. doi:  10.1002/adfm.201910259
[53] Shalaginov M Y, An S, Yang F, et al. Single-element diffraction-limited fisheye metalens [J]. Nano Letters, 2020, 20(10): 7429-7437. doi:  10.1021/acs.nanolett.0c02783
[54] Li X, Ma X, Luo X. Principles and applications of metasurfaces with phase modulation [J]. Opto-Electronic Engineering, 2017, 44(3): 255-275. (in Chinese)
[55] Pancharatnam S. Generalized theory of interference and its applications [J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417. doi:  10.1007/BF03046095
[56] Berry M V. Quantal phase factors accompanying adiabatic changes [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1984, 392(1802): 45-57. doi:  10.1098/rspa.1984.0023
[57] Tseng M L, Jahani Y, Leitis A, et al. Dielectric metasurfaces enabling advanced optical biosensors [J]. ACS Photonics, 2021, 8(1): 47-60. doi:  10.1021/acsphotonics.0c01030
[58] Tittl A, John-Herpin A, Leitis A, et al. Metasurface-based molecular biosensing aided by artificial intelligence [J]. Angewandte Chemie International Edition, 2019, 58(42): 14810-14822. doi:  10.1002/anie.201901443
[59] Osawa M , Ikeda M. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms [J]. The Journal of Physical Chemistry, 1991, 95(24): 9914-9919. doi:  10.1021/j100177a056
[60] Osawa M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) [J]. Bulletin of the Chemical Society of Japan, 1997, 70(12): 2861-2880. doi:  10.1246/bcsj.70.2861
[61] Merklin G T , Griffiths P R. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films [J]. Langmuir, 1997, 13(23): 6159-6163. doi:  10.1021/la960828s
[62] Wadayama T, Takada M, Sugiyama K, et al. Infrared absorption enhancement of C60 on silver islands: contribution of charge transfer and collective electron resonance [J]. Physical Review B, 2002, 66(19): 193401. doi:  10.1103/PhysRevB.66.193401
[63] Yujun Z, Shyamala Devi M, Travis H, et al. Review of mid-infrared plasmonic materials [J]. Journal of Nanophotonics, 2015, 9(1): 1-21.
[64] Le F, Brandl D W, Urzhumov Y A, et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption [J]. ACS Nano, 2008, 2(4): 707-718. doi:  10.1021/nn800047e
[65] Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum [J]. Nature Reviews Materials, 2016, 1(9): 16048. doi:  10.1038/natrevmats.2016.48
[66] Rybin M , Kivshar Y. Supercavity lasing [J]. Nature, 2017, 541(7636): 164-165. doi:  10.1038/541164a
[67] Rybin M V, Koshelev K L, Sadrieva Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators [J]. Physical Review Letters, 2017, 119(24): 243901. doi:  10.1103/PhysRevLett.119.243901
[68] Koshelev K, Lepeshov S, Liu M, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum [J]. Physical Review Letters, 2018, 121(19): 193903. doi:  10.1103/PhysRevLett.121.193903
[69] Ou K, Yu F, Li G, et al. Mid-infrared polarization-controlled broadband achromatic metadevice [J]. Science Advances, 2020, 6(37): eabc0711. doi:  10.1126/sciadv.abc0711
[70] Fan Q, Wang Y, Liu M, et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light [J]. Optics Letters, 2018, 43(24): 6005-6008. doi:  10.1364/OL.43.006005
[71] Jung M, Dutta-Gupta S, Dabidian N, et al. Polarimetry using graphene-integrated anisotropic metasurfaces [J]. ACS Photonics, 2018, 5(11): 4283-4288. doi:  10.1021/acsphotonics.8b01216
[72] Wei J, Li Y, Wang L, et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection [J]. Nature Communications, 2020, 11(1): 6404. doi:  10.1038/s41467-020-20115-1
[73] Bai J, Wang C, Chen X, et al. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection [J]. Photonics Research, 2019, 7(9): 1051-1060. doi:  10.1364/PRJ.7.001051
[74] Li X, Wang H, Xu X, et al. Mid-infrared full-Stokes polarization detection based on dielectric metasurfaces [J]. Optics Communications, 2021, 484: 126690. doi:  10.1016/j.optcom.2020.126690
[75] Chen Y, Pu S, Wang C, et al. Voltage tunable mid-wave infrared reflective varifocal metalens via an optomechanic cavity [J]. Optics Letters, 2021, 46(8): 1930-1933. doi:  10.1364/OL.417224
[76] Lewi T, Butakov N A, Evans H A, et al. Thermally reconfigurable meta-optics [J]. IEEE Photonics Journal, 2019, 11(2): 1-16.
[77] Pryce I M, Aydin K, Kelaita Y A, et al. Highly strained compliant optical metamaterials with large frequency tunability [J]. Nano Letters, 2010, 10(10): 4222-4227. doi:  10.1021/nl102684x
[78] Roy T, Zhang S, Jung I W, et al. Dynamic metasurface lens based on MEMS technology [J]. APL Photonics, 2018, 3(2): 021302. doi:  10.1063/1.5018865
[79] Reeves J B, Jayne R K, Stark T J, et al. Tunable infrared metasurface on a soft polymer scaffold [J]. Nano Letters, 2018, 18(5): 2802-2806. doi:  10.1021/acs.nanolett.7b05042
[80] Dong W, Qiu Y, Zhou X, et al. Tunable mid‐infrared phase‐change Metasurface [J]. Advanced Optical Materials, 2018, 6(14): 1701346. doi:  10.1002/adom.201701346
[81] Tian J, Li Q, Lu J, et al. Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances [J]. Optics Express, 2018, 26(18): 23918-23925. doi:  10.1364/OE.26.023918
[82] Alaee R, Albooyeh M, Tretyakov S, et al. Phase-change material-based nanoantennas with tunable radiation patterns [J]. Optics Letters, 2016, 41(17): 4099-4102. doi:  10.1364/OL.41.004099
[83] Wei M, Song Z, Deng Y, et al. Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces [J]. Materials Letters, 2019, 236: 350-353. doi:  10.1016/j.matlet.2018.10.136
[84] Yin X, Steinle T, Huang L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces [J]. Light: Science & Applications 2017, 6 (7): e17016.
[85] Peng C, Ou K, Li G, et al. Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared [J]. Optics Express, 2021, 29(9): 12893-12902. doi:  10.1364/OE.422519
[86] Sun Y, Wang Y, Ye H, et al. Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband [J]. Optics Communications, 2022, 503: 127442. doi:  10.1016/j.optcom.2021.127442
[87] Ghosh S K, Yadav V S, Das S, et al. Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (MIR) range [J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(2): 346-354. doi:  10.1109/TEMC.2019.2900757
[88] Cheng J, Fan F, Chang S. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control [J]. Nanomaterials, 2019, 9(3): 398. doi:  10.3390/nano9030398
[89] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces [J]. Nano Letters, 2017, 17(1): 407-413. doi:  10.1021/acs.nanolett.6b04378
[90] Shalaginov M Y, An S, Zhang Y, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance [J]. Nature Communications, 2021, 12(1): 1225. doi:  10.1038/s41467-021-21440-9
[91] Qu Y, Li Q, Du K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST [J]. Laser & Photonics Reviews, 2017, 11(5): 1700091.
[92] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of >230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces [J]. Nano Letters, 2017, 17(5): 3027-3034. doi:  10.1021/acs.nanolett.7b00359
[93] Dabidian N, Dutta-Gupta S, Kholmanov I, et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces [J]. Nano Letters, 2016, 16(6): 3607-3615. doi:  10.1021/acs.nanolett.6b00732
[94] Watts C M, Liu X, Padilla W J. Metamaterial electromagnetic wave absorbers [J]. Advanced Materials, 2012, 24(23): OP98-OP120.
[95] Zeng B, Huang Z, Singh A, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging [J]. Light:Science & Applications, 2018, 7: 51.
[96] Li F, Deng J, Zhou J, et al. HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses [J]. Scientific Reports, 2020, 10(1): 6372. doi:  10.1038/s41598-020-62433-w
[97] Zhang S, Soibel A, Keo S A, et al. Solid-immersion metalenses for infrared focal plane arrays [J]. Applied Physics Letters, 2018, 113(11): 111104. doi:  10.1063/1.5040395
[98] Hou H, Zhang Y, Luo Z, et al. Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors [J]. Optics and Lasers in Engineering, 2022, 150: 106849. doi:  10.1016/j.optlaseng.2021.106849
[99] Akın O, Demir H V. High-efficiency low-crosstalk dielectric metasurfaces of mid-wave infrared focal plane arrays [J]. Applied Physics Letters, 2017, 110(14): 143106. doi:  10.1063/1.4979664
[100] Zheludev N I, Noginov M A, Engheta N, et al. All-dielectric metasurface lenses for focal plane arrays operating in mid-wave infrared spectrum [C]//Metamaterials, Metadevices, and Metasystems 2018, 2018.
[101] Bogh C L, Muhowski A J, Montealegre D A, et al. Over three hundred percent increased light extraction from emitters at mid-infrared wavelengths using metalenses [J]. ACS Applied Electronic Materials, 2020, 2(8): 2638-2643. doi:  10.1021/acsaelm.0c00510
[102] Arbabi A, Briggs R M, Horie Y, et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers [J]. Optics Express, 2015, 23(26): 33310-33317. doi:  10.1364/OE.23.033310
[103] Chen K, Dao T D, Ishii S, et al. Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy [J]. Advanced Functional Materials, 2015, 25(42): 6637-6643. doi:  10.1002/adfm.201501151
[104] Neubrech F, Pucci A, Cornelius T W, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection [J]. Physical Review Letters, 2008, 101(15): 157403. doi:  10.1103/PhysRevLett.101.157403
[105] Abb M, Wang Y, Papasimakis N, et al. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays [J]. Nano Letters, 2014, 14(1): 346-352. doi:  10.1021/nl404115g
[106] Brown L V, Zhao K, King N, et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties [J]. Journal of the American Chemical Society, 2013, 135(9): 3688-3695. doi:  10.1021/ja312694g
[107] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy [J]. ACS Nano, 2012, 6(9): 7998-8006. doi:  10.1021/nn3026468
[108] Cubukcu E, Zhang S, Park Y-S, et al. Split ring resonator sensors for infrared detection of single molecular monolayers [J]. Applied Physics Letters, 2009, 95(4): 043113. doi:  10.1063/1.3194154
[109] Brown L V, Yang X, Zhao K, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA) [J]. Nano Letters, 2015, 15(2): 1272-1280. doi:  10.1021/nl504455s
[110] Aouani H, Šípová H, Rahmani M, et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas [J]. ACS Nano, 2013, 7(1): 669-675. doi:  10.1021/nn304860t
[111] Wallace G Q, Foy H C, Rosendahl S M, et al. Dendritic plasmonics for mid-infrared spectroscopy [J]. The Journal of Physical Chemistry C, 2017, 121(17): 9497-9507. doi:  10.1021/acs.jpcc.7b02039
[112] Wu C, Khanikaev A B, Adato R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers [J]. Nature Materials, 2011, 11(1): 69-75.
[113] Huck C, Vogt J, Sendner M, et al. Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods [J]. ACS Photonics, 2015, 2(10): 1489-1497. doi:  10.1021/acsphotonics.5b00390
[114] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes [J]. Nano Letters, 2016, 16(2): 1502-1508. doi:  10.1021/acs.nanolett.5b05316
[115] Etezadi D, Warner J B t, Lashuel H A, et al. Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas [J]. ACS Sensors, 2018, 3(6): 1109-1117. doi:  10.1021/acssensors.8b00115
[116] Hui X, Yang C, Li D, et al. Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155 [J]. Advanced Science, 2021, 8(16): 2100583. doi:  10.1002/advs.202100583
[117] Hu H, Yang X, Zhai F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons [J]. Nature Communications, 2016, 7: 12334. doi:  10.1038/ncomms12334
[118] Wenger T, Viola G, Kinaret J, et al. High-sensitivity plasmonic refractive index sensing using graphene [J]. 2 D Materials, 2017, 4(2): 025103.
[119] Li Z, Zhu Y, Hao Y, et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein [J]. ACS Photonics, 2019, 6(2): 501-509. doi:  10.1021/acsphotonics.8b01470
[120] Tittl A, Leitis A, Liu M, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces [J]. Science, 2018, 360(6393): 1105-1109. doi:  10.1126/science.aas9768
[121] Leitis A, Tittl A, Liu M, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval [J]. Science Advances, 2019, 5(5): eaaw2871. doi:  10.1126/sciadv.aaw2871
[122] Chen Y-S, Meng D, Ma W-Z, et al. Fingerprint detection in the mid-infrared region based on guided-mode resonance and phonon-polariton coupling of analyte [J]. Optics Express, 2021, 29(23): 37234-37244. doi:  10.1364/OE.438354
[123] Liu Z, Zhu D, Rodrigues S P, et al. Generative model for the inverse design of metasurfaces [J]. Nano Letters, 2018, 18(10): 6570-6576. doi:  10.1021/acs.nanolett.8b03171
[124] Elsawy M M R, Lanteri S, Duvigneau R, et al. Numerical optimization methods for metasurfaces [J]. Laser & Photonics Reviews, 2020, 14(10): 1900445.
[125] Jin Z, Mei S, Chen S, et al. Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithm [J]. ACS Nano, 2019, 13(1): 821-829. doi:  10.1021/acsnano.8b08333
[126] Campbell S D, Sell D, Jenkins R P, et al. Review of numerical optimization techniques for meta-device design [Invited] [J]. Optical Materials Express, 2019, 9(4): 1842. doi:  10.1364/OME.9.001842
[127] Yao K, Unni R, Zheng Y. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale [J]. Nanophotonics, 2019, 8(3): 339-366. doi:  10.1515/nanoph-2018-0183
[128] Ma W, Liu Z, Kudyshev Z A, et al. Deep learning for the design of photonic structures [J]. Nature Photonics, 2021, 15(2): 77-90. doi:  10.1038/s41566-020-0685-y
[129] Li J, Bao L, Jiang S, et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging [J]. Optics Express, 2019, 27(6): 8375-8386. doi:  10.1364/OE.27.008375
[130] Koppens F H, Chang D E, Garcia de Abajo F J. Graphene plasmonics: A platform for strong light-matter interactions [J]. Nano Letters, 2011, 11(8): 3370-3377. doi:  10.1021/nl201771h
[131] Hu Y, Li X, Wang X, et al. Progress of micro-nano fabrication technologies for optical metasurfaces [J]. Infrared and Laser Engineering, 2020, 49(9): 20201035. (in Chinese) doi:  10.3788/IRLA20201035